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Expressions are derived for the spectral density of acoustic power radiated from
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sound power levels can be generated by fully-developed turbulent flow, even in the absence
of flow distrubances due to pipe fittings.
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1. Introduction

There are meny cases in which acoustic radiation from an industrial piping installation is of
sufficient intensity to cause considerable annoyance to nearby communities. The radiation
results from vibration of the pipe walls which may be excited in a variety of ways - by fully
developed turbulent flow in the pipe; by local flow disturbances at elbows, valves and other
pipe fittings; by the internal acoustic field generated by the flow and disturbances to it; or
by mechanical excitation by pipe fittings which have themselves been excited by the pressure
field associated with the flow.

Here we shell be concerned only with the first of these mechanisms, excitation by un-
disturbed fully developed turbulent pipe flow, and shall attempt to make some assessment of the
conditions for which this basic mechanism may be a significant noise source.

2. Theory for acoustic power radiation from a pipe excited by internal turbulent flow

The pipe flow model considered is & thin circular cylindrical shell with simply supported
ends, of radius a, length %, wall thickness h, and surface area S(= 2maf), with a fully-
developed internal turbulent gas flow whose velocity on the pipe centre-line is U,. The pipe
is immersed in a fluid in which the speed of sound is c. The densities of the gas flowing in
the pipe, the pipe material, and the ambient fluid are pp, pg, and p respectively.

The turbulent gas flow gives rise to a random fluctuating pressure field with power spectral
density ¢p on the internal surface of the pipe. Vibration of the pipe wall excited by this
pressure field results in radiation of acoustic power, of spectral density ¢pRr, into the external
ambient fluid.

For this model, Bull and Rennison(l) derived an expression for the power spectral density of
the radial vibrational displacement of the pipe wall, averaged over the vibrating surface. In
that derivation it was assumed that the pipe vibration is lightly damped; that the vibrational
response is dominated by resonant modes; and that the resonant modes are sufficiently numerous to
allow the joint acceptance of the pressure field and the pipe structure, which for the ath mode
is defined as )

jzaa(w) = %2 ,L ds(r,) wa(fl) i dS({E) wu{f2)Rp(§’°5w)’ (1)

(where RQ(E,T;N) is the narrow-band correlation coefficient of the pressure field for points with
a separatidn vector £ and time delay T, and Y,(r)represents the shape of the ath mode) to be
regarded as a continuous function, j2(v,8), of frequency and the angle 8 which the structural wave
vector makes with the coordinate axes.

With the further assumptions that significant acoustic radiation is produced only by those
resonant modes whose phase velocities are supersonic with respect to the ambient fluid, and that
these supersonic modes radiate with the same €fficiency as an infinitely large piston, the
following expression was cbtained for the ratio of the non-dimensional spectral density of the
acoustic power radiation ¢pg (= ¢pR/pCZSa) to the non-dimensional power spectral density of the
pressure field of the internal flow ¢p(= ¢pU0/q§ a)%;

®. _ rpz J v3/2
L M J(=2S jq, (2)

(¢P7u3) 12Bv, .2 v

where prs = pr/ps; B = 1/(2/3a); vge = c?/Berp?; Vhe = Uc?/Berp?; Qo T %prozg Ue = ulp is the
convection speed of the internal pressure field; crp =[ E/pSEf)—ug?]ﬁ; E and p are respectively
Young's modulus and Poisson's ratio for the pipe material; Q is the damping factor;v = w/u_; w is

the radian frequency; and wy = cpp/a is the 'ring' frequency. JS is given by the followiﬁg
equation: 8
2
Js(v) = j%(v,8)n(v,8)ds, (3)
61
where n(v,8) is a continuous modal density function given by =
__A sin! B3
n(v,8) = B [1- = ] (4)

*# The numerical constant in equation (2) is given incorrectly in reference 1.
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5= v/, ¥2 = 1-p?, A = ¢/a, and 6, < 6 < 6, is the range of 8 for which supersonic modes oceur
at a particular frequency.

An alternative form of equation (2) can be obtained by introducing a form of Mach number
My = Uyp/c, defined as the ratio of the flow velocity on the pipe centre-line to the speed of

sound in the fluid outside the pipe. Then vpe < u?Mg2vge, and we obtain

2
¢PR - Wpf U&c M 37 Q
® 12 "~ v "o %
D
p2_ M 37 Q
= ™ %S O s (5)

1 " BvaLPZ ’

where Myp = crp/c. Thus to obtain the complete functional form of the ratio @pg/?, it is
necessary to examine the dependence of Jg (as defined by eguation (3) ) on the sysgem parameters.

In accord with experiment, the narrow-band space-time correlation coefficient of the internal
pressure field can be represented by | | | [
c wl &l £ _win
i) = X X we
RP(E,n,o,m) exp ( T i cos U] 5 _ (6)

where £ and n represent spatial separations on the pipe surface in the axial and circumferential
directions respectively, and cyx and cy are experimentally dsi?rmined constants. The joint
acceptance can then be expressed as (see Bull and Rennison )

J2(v,8) = 32 (v,0) 32 (v,8), (1)
with *
42 - 2 _ [Mew 21k 2)2 & 2% 4107 _(_1 )R C MK
dom {2[(Km [ e, ]KC ) hcx K, 1[1-(-1) e x ¢ cos AKC]
+8cKXK2-[1-c2]K 2y(-1)%%%xe sin AK
Xxec''m X e c
2 2 2 2 2% 62 )
+ e KK (K =+ [1t+e IKC A/ NPK P4% (8)
and
5 cch[ln(—l)ne-cyﬁKc
don 2m(c 2K 2 + K ?) . (9)
¥ c n
Here
a 2 21 2y _ 2 2 y o,
A= [(K 2+ [l+cx Ik 2) th K, ]/Km ; (10)

Ko = keay Ky = kya(= mm/A); Ky = kpa(=n); km and k, are structural wave numbers in the axisl and
circumferential directions respectively, and m and n are the corresponding mode numbers; and
ko = 0/Ug.

35 Hydrodynamic Colncidence

Hydrodynamic coincidence is the condition in which the axial wave pumber compenent K of a
structural wave is equal to the "wave number" k = w/U_, of the internal fluid flow (K, = %m) in
which case the trace velocity of the structural®wave in the flow direction is equal tg the con-
vection velocity Uc of the turbulent pressure field.

£’
In ref rence 1, cosMK in the first term of jim is incorrectly given as cosK

2
term Km as Km; the factor m is omitted from the denominator of j%n.

%13 and in the third
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According to equation (5) the spectral density of the acoustic power radiation is proportion-
al to Jg, which in turn is strongly dependent on J*(v,8) as given by equations (7)-(10). It is
therefore to be expected that large values of Jg, and consequently of ¢pg, will correspond to
situations for which the maximum possible value of 32 occurs within the range of integration,
§1<6<65, of Jg at a given frequency. The maximum possible value of j? for any particular
vibrational mode is determined essentially by that of j%m which occurs for K. = Kp, that is very
nearly at hydrodynamic coincidence. (jﬁn also exhibits a maximum value, occurring at cyK, = Kn,
which is much broader than than of J%m- In general this will tend to shift the peak value of 32
away from K./Ky, = 1, but the effect is not generally significent - typical examples of the
variation of ji., Jgn and j2 with K,/Kp and K./Kp are shown in figure 1 of reference 1)

Hence large values of Jg and ¢pp might be expected for flow conditions which give coincidence
In the theory of section 2, the resonance frequencies of the pipe are assumed to be given by
v2 = g2k* + y2Zsin'e, (11)

where K2 = K; + Ki, in which case the required conditions for coincidence are

M, > /EMLPJEE for vE/2 %
} (12)
g -
and Mc?(_\_)z—_-;;zMLp/ﬁforv>/2_}

But, at coincidence the phase velocity of the structural wave is U, sin €; and since only super-
sonic modes contribute to Jg, it follows that the values of jz corresponding to coincidence will
only contribute to Jg when the flow speed is supersonic and Mg sin 6 > 1. Coincidence can occur
for subsonic flow speeds but, according to the assumptions made in the present work, the
structural wave excited would make no contribution to the acoustic radiation. Hence, in most
practical situations, with subsonic flow speeds, coincidence as such will not play a part in
determining the acoustic power radiated.

This raises the question of how close is the approach to coincidence in practical flow
situations. Again using equation (11), it can be shown that the minimum value of K,/Ky for
supersonic modes (those for which v2 > BK2vge) is given by FyMpp/BU/M,, where

F = { /2 for v <2,% <2, VN, > 2/2,

m { ac ac
% ——— for v, <2,V> /2
{ (\)2 _ l) ac
{ or Gac >2, ¥ o> GA’ (13)
{
{ =9 =2 :
{ If—z—-(l < fT)]“L‘ for 5 <2,V < VB, V5 < V2/2,
E \)E.C \Jac
{ or ;ac >2, 9 < GB’ G/Gac < V2/2,

- - - 1
and Vip T vac{l £ [1 - h/vacz]é}%/ﬁi . (1k)

Hence, the minimum possible value of K,/K, for supersonic modes is /EMLPVB/w/MC. For a
steel pipe in air (Mpp=15.4, u=0.28, u=0.7), this has the value of 31.8 /8/M,. For practical
limiting values of, say, 8 = 0.005 and M_ = 0.5, the minimum value of Ko/K, is 4.5. This
would, for example, correspond to a jz value smaller than the maximum by a factor of over 10
for the mode numbers used in figure 1 of reference 1; and it is clear that, in general, the 32
values contributing to Jg will be smaller than the maximum by very much larger factors.

Kc /Ky values much closer to unity are possible for pipe material quite dissimilar to steel;
a P.V.C. pipe (Mp = 5.8, u = 0.4) would have a minimum Koibay of 12,2 JE]MO, which yields
1.7 for the same limiting conditions as for steel.
ke,

An approximation for acoustic power radiation
4.1 The joint acceptance and J_

It can be concluded from the preceding discussion of hydrodynamic coincidence that for
most cases of practical interest Kc >> Km.

If the minimum value, for =mpersonic modes , of the ratio of kc to the -other wave-number compon:
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ent/?g expressed in a similar way to that of Kc/Km’ namely as KC/KH =F, MtPJEEYMQ then

5-1/2
{ ac 7
= i v £ 1
B = 4 R ST T T e /vac
{ [1-v(1-v /Uac) ! (15)
E ;1/2 for GYG;C; 1
and the minimum possible value of K /K_ is v, 122 YBU/M = 1/M . Thus, if the flow Mach number
P ac

is restricted to MO=0.5 (MC = 0.35), as in section E, Kc/ﬁn willcalways be greater than about 3,
irrespective of the pipe material and the value of B. We can therefore expect the assumption
Kc »> Kn to be valid over a large part of the field of interest.

Assuming that these two inequalities are satisfied, that c2 << 1 (experiment indicates
c_ = 0.1), that ¢_ is of order unity (actually it is about 0.7*, and that, in addition,
Kﬁ >> 1/c_A and 1¥ﬁcy, equations (8) and (9) can be replaced by the very much simpler approximate
€q

uations e uc M
‘2 o ——-X = _______X 9 (16)
Jom — AK AoMEp
¢
2 a5 uMo
and don T Pme K. Pme WM C (17)
¥y e vy LP
e u2M2
Then jg(v,e) B X = (18)
2n ¢ AvEME
y P

The inequality CXAKC>>1 will be adequately satisfied except for short pipes at high flow speeds.
The inequality c nK >>1 is more difficult to satisfy; it is valid for large pipes at low flow
speeds, but the pr%oximation becomes rather poor for small-diameter pipes at high flow speeds.

The approximations, equations (16) and (17), were obtained previously by Clinch(g), even
though his complete expression for the joint acceptance differs from ours (as a result of his
analysis not taking account of symmetry conditions which must apply to the circumferential narrow-
band correlation function of the pressure field - see reference 10y

When the joint acceptance given by equation (18), (which, it should be noted, is independent
of 8) is substituted in equation (3), we obtgin,,
e, WM, Ns(v)
Fil & —_— | ————— 3 (19)
S Sy omae VP
LP

where NS(U) = ISQ n(v,6)de. (20)

By

4,2, The modal density of supersonic modes

We wish to obtain an approximate expression for the density of supersonic modes, and for
analytical convenifgﬁe we shall use an approximate resonance frequency equation similar to that
proposed by Heckl , namely

o = (8K2 + wsinEB)g, (21)
rather than equation (11). Following the same procedure used by Heckl for the total modal density
we obtain
o= o A -1 = -1 =3 2 1/2 — —
n:(v) = E;E-[cos (1-2v) - cos ~{[(1-v7) + hBKn/w] —v}]for v<l
{
{4 = g = a2 & ; 18 =
T cos  {v=[(v=1)" + hBKnl/w] 1 for v>1 , (22)
where Knl is the maximum value of Kn at which supersonic modes occur at a given freguency.

For v<<1, BKe/w = ;2/;_ , and we find
il ac

3f/e.2
) 32 Ay A
NS(V) = _—m = ‘_1‘7‘2—_ . (23)
thv&Cw Ly e

L.3 Acoustic power radiation

Using equations (6), (19) and (23) we can obtain the following low frequency approximations to
JS and the spectral density of the acoustic power radiated:
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1 Cx uaMg
J =, = —, (2k)
s g2 ¢, l}11/2\}/2
g 2.5

and - ®PR L °x Pes” Mo 9 (25)

3 > 83 - Il .

¢p 96T o / B2\)3/2M2

LP

5 Results and discussion
Sals d
==

In this discussion, we shall refer to calculated results based on equations (3), (4), (5) and
(7)-(10), without any further approximation, as exact values, and those obtained directly from
equations (2L4) and (25) as approximate values.

As indicated in section 2, to define the functional form of the spectral density of the
acoustic power radiated as given by equation (5), we have to consider the form of J_. In general
I. =T {w,B,hN, Mo Mc), but the approximation, equation (24), is independent of B,K, and Mo
(Indicating independence of pipe geometry and material).

2 2 .
Well away from hydrodynamic coincidence (K /K >> 1), j° ~ 1/A, j°_ is independent ofEA, and

J % 1/A; as coincidence is approached there is an increasing additional dependence of j on

1/A%, but in general this remains weak. Hence, since n(v,8) ~ A and the integration limits, 8
and 6,, in equation (3) are independent of A, J, can be expected to be essentially independent of
A even when coincidence occurs. This has been confirmed by exact calculations of J_ for steel

and P.V.C. pipes with flow speeds well in excess of practical values (M_ = 2.75) and suEficientl%

high to give coincidence for supersonic modes, for 10 € A € 100 and for B values of 10~ and 10 ~.
It might be noted here that in the exact calculations the upper limit of integration, 8,, is taken
as the value of 8 corresponding to the n = 1 mode at a given frequency for v < 1 (since the n = 0

mode cannot ocecur for ¥ < 1), and as n/2 for v > 1.

Consider next the dependence of J_ on RB. j2 remains almost independent of B except at K /Km
values quite close to unity, and n(v,6) ~ 1/8; so the integrand of Jg is v 1/B8. TFor v less
than the icoustic cgiﬁcidenc$ {requency v__, the range of integration, effectively determined by

PR =5 / ; ac : 5 . :
6, = sin T[V=(1 - B°M )17’ 7, introduces a B-proportionality, resulting in J_ independent of B.
For v > v, the intg Fation range is independent of B and J_ ~ 1/B. Thus, even if coincidence
occurs, J_ v B or B T according as v is less or greater than Vst and this is confirmed by exact
calculaticns.

Having concluded that, at least for v < v__, J_  is essentially independent of both A and B, we

can examine the remaining variables without ha%ingsto consider wide ranges of B and A. The vari-
ation of exact values of J_ with v for B = 0.005, A = 20, and MO = 0.2 and 0.5 is shown in figure
1 for two values of (18 and 6) representative of steel and P.V.C. respectively. The results

show that J_ is, at least, roughly independent of pipe material. Over the central part of the
range O € v § 1 the values of J_ do not differ by a factor of more than about 1.5 (equivalent to a
2 dB difference in power spectral levels) and the agreement extends to higher frequencies than
those for which equation (24) might be expected to apply. At low frequencies the comparison is
obscured by the different values of v at which an n = 1 mode first becomes supersonic.

The dependence of J_ on M_ is determined by the variation of j2 with M_, since,.n(v,f8), 6., and

68, are each independentsof M ? and, except for cases very close to coincigence, j2 " Mo' xact
values of Js against v for various Mach numbers are shown in figure 2 for a steel pipe with
B = 0.005 and A = 20. The condjtions represented do not very closely approach coincidence, and

the curves show a very precise Mo—dependence of Js.

Finally we compare the frequency dependence of JS predicted by the approximate equation (2L)
with that obtained from exact calculation. Typical comparisons are shown in figure 1. Agree-
ment is good at low frequencies, except where the effect of allowing no radiating modes for n<l
at ¥V < 1 in the exact calculations ig evident. But, as might be expected since the approximation
is basically a low-frequency one, the agreement deteriorates as v increases. This results prim-
arily from the fact that the modal density N_ varies as higher powers of v as v_inecreases; and if

. . oS .
account were taken of this, the approximation would be improved.

5.2. Spectral density of acoustic power radiation

Equation (25) for é__./¢ does not involve any additional approximation beyond that of equatior
(23), and the discussion inPthe preceding sectiog apglies Equ%lly well to it. @PR/QP can be ob-
tained from J_ simply by applying the factor (“DfsMo Q/128 UMLP).
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Figure 1 "Exact" and approximate values of J_ for
different pipe materials
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Figure 2 Effect of Mach number on frequency
variation of JS

6. Conclusion

Mo increasing

The form of variation of the spectral
density ¢P itself with v will be addition-
ally depengent on flow Mach number and pipe
material (through P)’ since the spectral
density of the pressure field of the intern-
al turbulent flow ® is a function of wa/U
= v M. /M only. ¥his is illustrated by
figure 3,Owhich shows spectra for steel and
P.V.C. pipes at various values of M _, based
on th?hﬁurbulent boundary layer data of
Bull. In general the effect of the
shape of the pressure spectrum will be to
increase the power of MO on which the spect-
ral density depends.

5.3. Total radiated power

The dependence of the non-dimensional
power radiated on various parameters can be
obtained directly from equation (25), apart
from the modifying influence of @ _ on the
dependence on v, MLP and Mb.

In dimensional terms, the pog3£ wi%l be
proportional, in particular, to Ula &/h7,
again with some modification of tge variat-
ion with a and UO depending on the form of
@p.

Overall sound power levels for steel
and P.V.C. pipes with 8 = 0.005 and 0.01
as a function of the flow Mach number, are
shown in figure 4. The values given are
those from exact calculations; correspond-
ing wvalues based on the approximate spect-
ral density relation are not given, since
the relative values of the results from the
two methods are very sensitive to the choice
of low frequency limit in the case of the
approximation.

Figure 4 indicates that gquite high
sound power levels can be generated by
turbulent flow in thin-walled pipes for flow
conditions which are not in any way extreme,
even when the flow is not disturbed by pipe
fittings.

From the analysis presented here it would appear that for practical piping systems, defined by
say A > 10, 0.005 < B < 0.05, and O < M_ < 0.5, the spectral density of acoustic power radiation
can be guite well represented by a simple approximate expression.

The significant results are that the radiated power is proporticnal to the fifth (or higher)
power of flow speed, pipe length, the fourth (or perhaps lower) power of pipe radius, and inversely

proportional to the square of the wall thickness.

The results obtained indicate that undisturbed fully-developed turbulent pipe flow in thin-
walled pipes may well give rise to objectionably high radiated sound levels.
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Figure 3 Comparison of non-dimensional spectra of the pressure field excitation and the radiated
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