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SUMMARY

An approximate potential flow solution is obtained for the discharge through two
dimensional T-shaped contractions. The analytic solution is obtained using methods of
conformal mapping. In spite of the apparently simple geometric configuration of the
boundary conditions, exact solutions are not available because of the inability to
evaluate in closed form sets of incomplete elliptic integrals of the third kind. The
approximate solutions which are presented require the use of several diagrams which
have been prepared to facilitate the use of the equations describing the flow through
the T-shaped sections. These results were verified experimentally using tests conducted
on an electric analog model.
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INTRODUCTION

Two-dimensional potential flow through the contracted section shown in Fig.l was investigated.
In spite of the apparently simple geometric configuration of the boundaries which contain
the flow, no exact solutions are known to the authors, which describe the conditions resulting
from differing potentials located at finite distances upstream and downstream from the contractions.

The approximate solution to these two problems is described in terms of conditions produced
by flow through a porous media. The solution would be equally appropriate for any field problems

which satisfy the Laplace equation such as the flow of heat through a plate where the impervious
by surfaces of constant temperature.

MATHEMATICAL ANALYSIS

Boundary Conditions

Consider a steady, two-dimensional flow in a homogeneous, isotropic porous media shown in
Fig.l. The impervious boundaries AFED and BA-FED for cases A and B respectively are streamlines
defined by the stream function ¥ having a magnitude equal to zeroc. The central vertical line EC
of case A and the impervious boundary AB and central vertical line BC of case B are streamlines
defined by the stream function ¥ having a magnitude -q equal to the negative of the discharge.
The heads at inlet and outlet for both cases are H and h respectively.

Method of Solution and Definition of Complex Planes

To determine the discharge through the two dimensional shapes shown in Fig.l methods of
conformal mapping were used. Unfortunately, an exact solution for the case where Lp was finite
was not obtained because of difficulties in the integration of hyperelliptic integrals. An
approximate solution for this condition was however obtained. As the length Ly increases, other
dimensions remaining fixed, the flow in the downstream part of reach Lo approaches uniform flow.

The solution for the case where the distance L shown in Figs.2 and 5 is finite is approximated
using the solution for conditions when Lp is infinite. This is accomplished by determining the
location along the contracted section of infinite length where the flow approaches uniform
conditions. This condition was considered to occur at that point where the centerline velocity
along the contracted section was at least 99% of the velocity which exists for conditions of
uniform flow. Downstream from this 99% section uniform flow was considered to exist for the entire
reach to the end of the contracted section.

Relationship between Complex Planes: Case A Using the Schwartz-Christoffel Theorem a
relationship was obtained between the z and p planes. Substituting p = t2 and using the boundary
conditions at points B and A shown in Fig.2, the relationship between z and t was cbtained as

IT{m,n,t)

o = im(21+22} (1)

where II(m,n,t) and IIO(m,n) are the incomplete and complete elliptic integrals of the third kind
with modulus m, parameter n and amplitude t, Byrd ana Friedman (1).

Similarly, the relationship between the w and t planes was obtained as

q ., Yt2-1 +t Y1+n
fn =
L vt2-1 - t V/1+n

Determination of I, and 22 - Substituting the boundary conditions at points F and E
into Eq.(1), the following equations were obtained

1 1
2 IIO(m ,n')

w o= - kH - iq (2)

! — (:L+94')
T m2+n IIO(m,nj_ 2 )
2y = 211 (m,n) /(1) (Lm@/n) - 1 o

where the dimensionless lengths are defined as Li =L, '%. , Qé = 22/21 and the modulus and para-

3 2
m2+n

meters m' and n' are defined as m' = V1-m2 and n' = -
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Determination of length L - The velocity in the x-direction at a point J located a
distance L along BC from the sudden contraction, as shown in Fig.l case A, is expressed as

9y _ (24 38t, _ g
(V) s ) = ey " (5)
where the ratio of the local velocity to the velocity of uniform flow is equal to €. The terms
Q%E 7 and (%%JJ can be obtained by taking the derivative of Egs.(l) and (2) with respect to t
X

respectively and substituting the boundary conditions at point J. Eq.(5) then becomes

QIIO(m,n) Y1+n
Tr(1+’¢é)

1-mte = -e (6)

In Eq.(6) t7 is the coordinate at the point J on the t plane and at this point the velocity of
flow is eq/%;. Substituting Eq.(l4) into Eg.(6)

£, = _% V1-€2(14m2/n) (7)

The length L can be obtained by substituting tJ and the boundary condition at
point J where y = O into Eq.(l) to obtain

L' = Al = Li (8)
where L' = L/ll; L' = Llfll
and A, = i %-II(m,n,tJ) Y(14n) (1+m2/n) (9)

Determination of discharge when Lo, is finite - The velocity potential ¢7 across section
GJ in Fig.l can be approximately by substituting tJ into Egq.(2) and taking the real part of the
resulting expression

iR 4o
, /%J 1+ t;/14n

= n
d m 4%5-1 - tJJ1+n

- kH (10)

If ¢ approaches unity, flow after section GJ can be considered as uniform flow.
Therefore the discharge through the contracted section can be approximated by applying Darey's
law in the reach downstream of section GJ which has a length L2—L.

¢_ + kH ¢ + kH
4 = J 0 = g (11)
e = -
L,-L 1 L-L

In Eq.(11) LS = L2/21. Substituting Egs.(8) and (10) into (11), the equation for the discharge
q was obtained as

k(H-h)
g = 1 T _ (12)
LI + L} -4 + 4,
where /E:E7;g + /1 n
1 i
A2 = = n (13)
: vl-l/tg - /T+n

In order to use Eq.(13) to determine the discharge, Ay and Ao must be known. All
physical dimensions are assumed to be given in the definition of the problem. Using Egs.(3) and
(L), Fig.3 was prepared which gives the relationship between L5, L}, m and n. Since 2} and L!
are known from the geometry of the problem the values of m and n can be determined. Employing
Egs.(9) and (13), Fig.4 was prepared which describes the relationship between Ay, Ao, m and n.
In Fig.h the value of € is 0.998 which means that the velocity along the boundary at point J is
0.2% less than the velocity of uniform flow which occurs at an infinite distance downstream.

To apply this analysis, the dimensionless length L! cannot be less than L' as obtained from

Eq.(9). 2 g

Relationship between Complex Planes: Case B Similar to case A the relationship between
z and t for case B, as shown in Fig.5, was obtained as follows:




465

5 = Ifm,n,t (2' + 8 ) (lh)

ITI (m, 1 2

Similarly, the relationship between the w and t planes was obtained as

o = Qg Yn?t2-1)(1+n) + v(£2-1) (n+m?)
T JP2-1) (1) - /(£2-1)(ntm?)

- kH - iq (15)

Determination of I, 12 and L - Using the same procedure as in case A, the following
equations were obtained

2 II (m',n')
m [e]

L = 2. (@A) (1+2)) (16)

2 = gxg;mm)fGESGIEZS -1 (17)
where L = L, /%, end £} = /% -

Y = - 5% (18)

Lt = B, -5 (19)

B, = i %-II(m,n,tJ) /(1+n) (1+n2/n) - L} (20)

Determination of discharge when Lo is finite - Substituting t
for ¢J at section GJ shown in Fig.l case B,

into Eq.(15) and solving

J

/(metg—l)(l+n) + /(tg—l}(n+m2)
6. = Lgn - kH (21)
Y(m?t2-1)(14n) - /(£2-1) (n+m?)

At point J where € approaches unity, conditions of uniform flow may be assumed to
exist at sections further downstream. By applying Darcy's law in the uniform flow reach L2-L
the discharge across the contraction was obtained as

¢J + kh ¢J + kh
q=__:_._.g = S (iz2)
L2 L il L2 L

where Lé = L2/21. Substituting Eqs.(19) and (21) into (22).

k(H-h) (
23)
Li+Lé-Bl+B2

where

1+n + f(n+m2)(t2-l)/(m2t§-l)

in P (2L4)
Yil4n - /(n+m2)(t2-l)/ 2t2 1)

B =

i
2 T

The relationship between %4, L!, m and n in Egs.(16) and (17) are shown in Fig.
Using Eqs.(20) and (24), Fig.6 was prepared which gives the relationship between Bj,Bo, m and n.
In Fig.6 the value of e is 0.990 which means that the ratio of the local to the velocity of
uniform flow is equal to 0.990 at point J. To apply this analysis, the dimensionless length L'
cannot be less than L' as obtained from Eq.(19).

PRESENTATION OF RESULTS

The relationships between 22, Li, Lé Al, Ap, By and Bo shown in the equatlons are dependent
upon the modulus m, parameter n, and €. It is seen that a direct solution of these problems in
which the geometry of the flow region is considered as the independent variable is not practical.
Numerical solutions for a range of physical configurations were therefore computed and the results
presented in graphical form as shown in Figs.3, 4 and 6.
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APPLICATION

Consider the flow in regions geometrically similer to those in Fig.1l which have the following
characteristics: permeability of the media k = 0.002 ft/sec, H-h = 15 ft, Ré - 22/21 =1,
¥ = = ' = = 2,
L} Ll/zl 1.42 and L) LQ/Rl 2
From Fig.3 the values of m and n for both cases A and B is determined as m = 0.80 and
n = 0.4%. From Figs.l and 6 the values of Ay, Ap, By and Bp, required in Egs.(12) and (23), are
determined as Ay, = 2.61, Bl = 2.55, A2 = 2,15, and B2 = 2,42,
Therefore, the discharge and the length L' for cases A and B are determined from Egs. (12)
and (23) as

Case A - 1 =
S R - T, - 03 (25)

For the results of Eq.(25) to apply the following inequality must also be satisfied

Lt = A - Li = 1.19:< 5! (26)

2

Case B q 1

- = 1 fic
k(H-h) L1+L2 Bl+B2

For the results of Eq.(27) to apply the following inequality must also be satisfied

= 0.30k4 (27)

B = Bl - Li = 118 < Lé (28)

ELECTRIC ANALOG MODEL

Confirmation of the accuracy of the analytic analysis was obtained from tests conducted using
an electric analog model. The problems described in the sample calculations were used for the
experimental models. The experimentally determined flow nets are shown in Chang (2). The number
of equipotential drops Ne and the number of flow channels N for cases A and B described in the
Applications were obtained., The dimensionless discharges were computed as follows:

N
Case A f _ 6.6 _
—(-q—” Hoh ﬁ'; = —'20 = 0.330
N
9 L 05
Case B k(H—h) Ne 50 0.293

Comparing these with the theoretically obtained values, the differences for cases A and B are
2.37% and 3.62% respectively.

CONCLUSIONS

An approximate solution of the two dimensional Laplace Equation is obtained for the flow rate
through a contraction in which a plane of constant potential is specified at an up and downstream
section. The solution involving terms containing elliptic integrals of the third kind is expressed
in graphical form to facilitate an application of the resulting equations.
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