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SUMMARY

Solutions of the Navier-Stokes equations - steady, laminar and two-
dimensional including inertia terms - have been obtained using the Vorticity
Transport equations for flow patterns around infinite arrays of square
cylinders at right angles to the flow direction.

The proportions of the problem have been varied to give rectangular cavity
sizes over ' a wide range such that results have been obtained for porosities
ranging from .36 to .97 and for cavity ratios (distance between cylinders/
half length of square cylinder side) from 0.5 to 10.0.

Solutions have been obtained for low Reynolds number with inertia terms
retained and the position of the separating streamline is defined auto-
matically by the solution. The development of the vortex patterns in the
wake region with increasing flow (RN) and with varying cavity proportions
clearly illustrates some interesting circulation patterns in the separated
flow region.

The results for the creeping flow regime are compared with those of other
workers.

*K.P. Stark, Associate Professor in Engineering, James Cook University of North Queensland,
Townsville, Australia.
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INTRODUCTION

The study of flow patterns behind a series of bluff bodies has important applications in
bioengineering, aeronautics, meteorology, textile technology and chemical, civil and nuclear
engineering. Using idealised models, calculations can be performed on present day computers
at a rate which allows the effect of the various parameters to be involved. Combinations of
such solutions should eventually yield an all embracing solution for the complex nonhomogeneous

wake flows found in practice.

The study described in this paper is concerned with flow past infinite arrays of square
cylinders arranged in a rectangular lattice as illustrated in Figure 1. This model has been
adopted as an idealisation of a porous medium in which variations in porosity (and therefore
cavity dimensions) may be introduced. The fluid considered is assumed to be Newtonian and
incompressible whereas the flows are treated as steady and isothermal at low Reynolds numbers
(RN). The solutions incorporate laminar flow inertia terms and range from creeping flows
(RN = 0) to flows where the inertia terms are of considerable importance.

Thom and Apelt (1) analysed the pressure

Direction of Flow distribution in a two-dimensional static hole at
l l J * | } ‘ * # ‘ l * ‘ | * } l l low Reynolds numbers in 1957. Since then a
number of studies of cavity flows have appeared
-f in the literature., These have included the
2 analytical and numerical work by 0'Brien (2,7),
Mehta and Lavan (3) and Hung and Macagno (4) and
__*_ the experimental studies by Weiss and Florsheim
| ! | (5) and Pan and Acrivos (6). O'Briem (7)
i e g s . gy == 2 b b summarises most of these studies.
| \ ! | 1 ¥
: ! If the idealised porous medium of Figure 1
i ! is assumed infinite in extent, a typical bay to
| | be analysed is shown as Figure 2a. For
| | 1 ; comparison a typical flow domain used in
P‘—J——J-'J—“‘4 thﬁsﬂﬁggﬁ)#cg@mgﬂwswu
| ! | rectangular cavities with either Couette or
Poiseuille characteristics is shown as Figure 2b.
The principal differences between the two models
= —e = L - are
(a) inertia terms are retained in Figure 2a but

not in the creeping flow studies of Figure

2b, thus, an additional boundary of symmetry
FIGURE 1. The 2-D Porous Medium Model. which effectively halves the flow field

exists in Figure 2b. ForC zero Reynolds

Direction of Flow l l * ;
L
(7777777 1 l 1 1 l ? A
4 ; Parallel 2
3 1. | Flow [ CD is fixed
4 ;'—' —_——— — | 7 A y for Poiseuille.
" A | A , flow
“ /] i’ 9
IIVIPYYi I : Y,
R N | 7 2
/
| 1 /
I % ] 4
4 l y Line of Symmetry “
& | A= = = = = = == ——} (D moves with
| | ¢ 7 for zero RN ; constant velo-
— il | ' ¥ | : l, city for
2 CELCL LY 4 ; Couette flow
L/ ; P I : ) and no pressure
A 5..._.___....._4 D : ; gradient
4 4
” 2 | 77777 74 /
(t e 22 222l I : D [/
B b 3/ —d— | —]
2
Figure 2a. A typical bay of the Figure 2b. Poiseuille and Couette
porous medium model (Stark 1968). flow model (0'Brien 1970).
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number the typical bay of Figure 2a would also be halved by a horizontal line of symmetry.

(b) The cavity base is a rigid boundary for the Couette and Poiseuille flows of Figure 2b but
a line of symmetry, AB , in Figure 2a.

(c) Figure 2b is bounded by a rigid boundary (stationary for Poiseuille, moving for Couette
flow) whereas the corresponding boundary, CD , in Figure 2a is a line of symmetry between
rows of fixed (square) cylinders.

SOLUTION OF THE FLOW EQUATIONS

The flow patterns within the appropriate boundaries can be resolved by a numerical
technique applied to the fundamental equations for the flow - the Navier-Stokes equations. One
of the most popular methods for such solutions involving two-dimensional, steady flows is the
squaring technique outlined by Thom and Apelt (8). The application of this method to the
problem considered is described by Stark (9,10) and involves the successive solution of the
coupled second order vorticity-transport equations (equations 1 and 2) for the streamfunction
(¢) and the vorticity (e) at each mesh point in the flow field until the field values so
obtained satisfy the finite difference equations at each node point to a desired accuracy.

vy = ¢ o wiGL)
e = 3¢ 3de 3¢ 3e
Ve RN (ax g BX) ()
where 1 1is a dimensionless streamfunction defined by u = - %% , V= %% .

€ 1s a dimensionless vorticity.

u
V

U is a representative velocity of the flow, which for porous media
flows is generally taken as the seepage velocity.

RN =

L 1is a representative dimension; a' in Figure 1.
v is the fluid kinematic viscosity.
u is the velocity component in the x-direction.

v is the velocity component in the y-direction.
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FIGURE 3. A typical grid pattern for the porous medium model.
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A typical grid pattern showing the mesh size is illustrated in Figure 3. Decreasing the
mesh size generally gives improved numerical accuracy; however, there is a need to optimise
the computational requirements (memory size and available computer time) with respect to the

desired accuracy.
The boundary conditions may be defined with reference to Figure 2a as:-

(a) AB and CD are streamlines (i.e. have a constant value of y) and lines of symmetry in the
direction of flow (i.e. € = 0).

(b) ENA and BPF are rigid boundaries with no slip (i.e. ¢ = constant and &€ must be calculated
using no slip conditions).

(c) EC and FD have similar flow patterns about them and therefore changes in ¢ and e for flow
approaching or leaving one of these lines must be identical with the corresponding changes
about the other line, i.e. reciprocal symmetry.

RANGE OF SOLUTIONS

The idealised porous medium model was examined for a variety of porosities to determine
the variation in head loss with porosity at different Reynolds numbers. The ranges considered
for (i) RN (defined in terms of seepage velocity and the side, a , of the square cylinder),
(ii) ratio of a/b in Figure 1 and (iii) porosity, are shown in Table 1. Beyond these ranges
of RN numerical stability problems appeared and the solutions became unweildy.

TABLE 1 At the higher Reynolds numbers the flow pattern began to

approach very closely that of parallel flow confined to a
Porosity Ratio a/b Range of RN channel of width 'b' (Figure 1). This is associated with the
movement of the separation streamline towards the body of the

. 360 4.0000 0- 80.00 flow. Under these circumstances it seems pertinent to

.555 2.0000 0-133.00 consider parallel Poiseuille flow for comparison purposes.
.750 1.0000 0-500.00 Indeed, considerations of accuracy, convergence criteria, etc.
.840 0.6667 0- 80.00 were based on a detailed examination of the behaviour of the
.889 0.5000 0- 66.67 computer programs and the resultant solutions for the simple
.918 0.4000 0- 57.14 Poiseuille case of parallel flow. Obviously, the piezometric
.937 0.3330 0- 50.00 head drop across a typical bay of the porous medium model will
.960 0.2500 0- 40.00 be less than that in a channel of width 'b' and the difference
.972 0.2000 0- 33.33 will be a function of porosity. If the piezometric head drop

across one bay of Figure 2a is defined as 'i' and the corres-
ponding head loss for Poiseuille flow across a parallel channel of width 'b' and the same length
as the porous medium bay is defined as ip then a relative head loss coefficient for the porous
medium bay is given by

Relative head loss coefficient = é%- D)
' P

Figure 4 shows the variation of this coefficient with porosity for zero Reynolds numbers.
The plotted points agree very well with those obtained by 0'Brien (7).

1.0 ] I I |
S i
sl - FIGURE 4. Relative head-loss
Relative : coefficient v. porosity
head drop a. B =0
y Sk -
P : Head-loss coefficient = i/iP
—— Porosity = Volume of voids/total
.0'Brien - Telpme,
.61
5 | | | |
o 2 4 .6 8 1.0

Porosity
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FLOW IN THE WAKE REGION
P 0.5

In studying the wake region the

.
— -_—03 L position of the separation streamline
—r

1 (y = 0), the strength of the vortex

\f—f pattern developed and the position of the
0.1 vortex core are all important parameters.
F'WW’L- For zero Reynolds number comparatively

BoEens Madii weak vortex patterns exist between the
RN = 0 iy LN [particles (of porous medium) and the patterns of these
yvortices whether (multiple) central vortices or non-

Figure 5a :central vortices are always symmetrically aligned.

4

On the other hand, for non-zero Reynolds numbers
the wake vortex patterns and the flow patterns general-
1y become asymmetrical under the action of inertia
terms. At the upper limits of Reynolds numbers consid-
ered the wake bubble remains asymmetrical whilst the
main body of the flow approaches parallel flow. Thus,
at these high Reynolds numbers the vortex pattern
virtually fills the cavity between the blocks with the
dividing streamline parallel to the base of the cavity.
Only under these conditions does it appear reasonable
* to simulate the flow as a cavity box flow with the 1id
of the box moving. In the creeping flow range, the
dividing streamline is seen to dip into the cavity and
for large porosities (i.e. small a/b ratios) the divid-
ing streamline may even intersect the line of symmetry
representing the base of the cavity.

Porous
RN = 0.

Figure

Porous
RN = 5
Figure SOME CREEPING FLOW WAKE PATTERNS
It is interesting to compare the formation of the
- wake region flow for the three different boundary con-
ditions which will be referred to as (i) porous medium
model, (ii) Couette flow model and Poiseuille flow
model (see Figures 2a and 2b). The solutions for the
Ug : FCouette and Poiseuille models are taken from O'Brien
:(7) and the three ratios of a/b viz a/b = 4,2,1 are

et
-.0L ,compared. These cases correspond to porosities of .36,
:.56 and .75 respectively for the porous medium model.
: ¥ For the two models to be comparable the Couette and
IQ

Porous Medium
RN = 25
Figure 5d
:Poiseuille flow models are considered for the geometry
with ¢ = b in Figure 2b.

5 ]

Solutions for a/b = 1 are given as Figure 5 with
(5a) to (5d) being the porous medium model for RN = 0,
0.5,5 and 25, and Figures 5e and 5f being O0'Brien's
solutions for Couette and Poiseuille flows respectively.

Couette Flow
RN = 0 Figure 6 shows the porous medium model (Fig.6a),
the Poiseuille flow (Fig.6b) and the Couette flow (Fig.

6c) model for a/b = 2 and for zero RN.

(.oo3!-.no3er -

Figure 5e
001

Figure 7 illustrates solutions for a/b = 4,
Poiseuille (Fig.7a), Couette (Fig.7b) and the porous
medium model (Fig.7c) RN = 0, (Fig.7d) RN = 8, (Fig.7e)
RN = 50 and (Fig.7f) RN = 80.

It will be noted that the flow profiles are some-

Poiseuille Flow what similar for similar cavity geometries.

RN =0

Figure Sf If a/b = 1 (Figs.5a,5e,5f) is considered for

creeping flow the porous media model gives a double
barrelled vortex whilst the Couette model has a central-
1y placed main vortex and the Poiseuille model T
degenerated into two discrete corner vortices.

FIGURE 5. Solutions for a = b
models, porosity = 0.75.
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0.5 For a/b = 2, Figures
—— . - 6, a central vortex exists
053 S for each set of boundary
conditions and very weak

—_— \Olv/ corner vortices are also

[« 71

e ————

present.

3

0.05

-.002 When a/b = 4 the

creeping flow solutions

Figure 6a (Figures 7a,7b,7c) each
show two central vortex
patterns although at zero
RN the size of the vortex
cannot be determined if
streamfunctions are evalu-
ated to four significant
figures.

Porous Medium
RN = 0
(Stark 1968)

TS B A BRSNS
SR LORRSRRKSSS

o Table 2 summarises
the vortex core streamfunc-
tion values and it is seen
that for a/b = 2 and 4 the
value is approximately the
same for each model where-
as for a/b = 1 the porous
media model value is again
intermediate between the
Poiseuille and Couette
VS WEI flows.

0'Brien
(1970)
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Figulﬁ 6c It should be noted
that the dividing stream-
line for similar cavity

FIGURE 6. Porous Medium Model (6a), Poiseuille (6b), geometry penetrates more
Couette (6c) for a/b = 2, Porosity = 0.56. deeply into the cavity for
Poiseuille and porous
media flows than for the Couette profile and in all cases the assumption of a parallel dividing
streamline would be quite erroneous.

Figure 6b

TABLE 2 WAKE PATTERN VARIATIONS WITH REYNOLDS NUMBER
VORTEX CORE VALUES FOR CREEPING FLOW The numerical solutions for the porous media model

for a/b = 1 and a/b = 4 are given in Figures 5 and 7 and
the variation with Reynolds number for these geometries
can be readily seen by comparing solutions for increasing
RN. Reynolds number has been based on the particle size
a/b Porous Media Poiseuille Couette 'a' (Figure 2a) and the seepage velocity which is given by
the (total flow/full cross section area).

Values given are wmax x 102,

4 0.987 1.00 105
2 0.963 0.90 1.02 + The following features of the wake flow are evident
1 0.150 0.08 0.36 in the plotted contours -

At zero Reynolds number the flow pattern is symmetrical about a line normal to the
direction of flow and situated midway between the particles. This symmetry is achieved because
the inertia terms vanish for creeping flows. For the patterns with a porosity greater than 0.80
the numerical results do not indicate the presence of a wake vortex at zero RN but it appears
certain that a finer grid and a greater number of significant figures would show the presence of
very weak corner vortex patterns.

As Reynolds number increases the flow pattern becomes asymmetrical. In all cases the cen-
tre of the vortex moves upstream initially but, at still higher flow the centreline tends to
move downstream, crossing the axis of symmetry (for zero RN), and moving into the downstream
half of the wake area. This movement of the vortex is dependent on the shape of the dividing
streamline. Although the streamfunction contour is symmetrically placed at zero RN it becomes
asymmetrical as RN increases, being nearer the base of the cavity in the downstream half of the
cavity. At this stage the main channel flow is not moving fast enough to bypass the cavity,
however, at even higher RN's the comparatively fast flowing main channel flow approaches
parallel flow and the vortex in the cavity moves downstream as if carried by the mainstream. 4As
the centre of the wake vortex moves downstream it also moves further away from the base of the
cavity. For a = b, at zero RN, the bubble appears to have a doublebarrelled shape and as a/b
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becomes less than 1, i.e. higher porosities, this shape
disappears and the dividing streamline penetrates to the
base of the cavity giving two vortex bubbles, one in

each corner of the cavity. On the other hand, as a/b is
increased, i.e. m < .75 the bubble tends to grow in the

Figure 7a other direction until, according to Weiss and Florsheim
Potgeuille (5), a/b = 3.4 when a second very weak vortex appears,
0'Brien (1970) rotating in the opposite direction to the dominant vor-

tex. This second vortex is obvious in the solutions
with a/b = 4.0, however, in the zero RN solution it is
too weak to be present in the numerical solution. The
higher RN solutions illustrate it clearly.

' The strength of the vortex cores develops in a

l peculiar fashion with changing RN. Consider the flows
with a/b = 4 - at zero RN the second vortex is too weak
to be recorded in the fourth decimal place. However, at
RN = 8 it is definitely present although very weak. At

o
Ln
x

b0 N VL U L G N G L LY

. RN = 40 and 50 it appears to reach its peak value be-
Figure 7b 6x1® 3 cause at RN = 80 the vortex reverts to a pattern quite
Coue:te similar to that for zero RN with only one vortex evident
0'Brien (1970) 2%1¢ 2 in the numerical solution. This vortex does have a

Chigher strength for the RN = 80 flow. Weiss and
RN & 0 Florsheim (5 ) indicate that a third vortex develops

when a/b = 8.

The vortex core strength of a number of the vor-
tices are defined in Table 3 in terms of the stream-
function value of the core. These properties cannot be
compared directly with the
analytical results of Weiss
and Florsheim (5 ) because
of their assumption that
the dividing streamline is

x10 J/

L ol

[

U o 7 G G 7 G O GO I P I ey
7 parallel to the base of the
; cavity from corner to
i corner of the blocks. As
4 their analyses were re-
. . 4 stricted to zero RN flows
LEULEL HE 1 this assumption is obvious-
= (010 7z Jirection of flow is ly incorrect as evidenced
7 left to right by the zero RN contour
/ plots.
’
7
/
4
A
Porous Medium Models a/b = 4
Figure 7d Figure 7e Figure 7f
RN = PN = 50 RN = 80

8
001

FIGURE 7. Solutioms for a/b = 4, porosity = 0.36, Poiseuille (7a),
Couette (7b), Porous Medium (7c,d,e,f).
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TABLE 3 The experiments of Weiss and Florsheim, on
the other hand, do support the higher RN
PROPERTIES OF CAVITY VORTICES solutions obtained for the porous media model.

These experiments placed the vortex core at a
I height of .65 depth above the cavity base for

a/b  Porosity ‘RN Vortex Core Value RNWF = 150 andva/z ; 2 waerd
_ W W
4.00 .36 0 .00001 ,-.00990 B =T =
40 -00002,~.023500 and V. = free streamline velocity assumed
80 -.03200 )
above cavity.
D.. = distance from stagnation point to
2+00 -6 Sg 33 :'ggggg L separation point.
133.30 -.02900 The porous media solutions for the same
a geometry at RN = 33, 50, 66 and 133 give a
1.00 S 13 2? (2 at) "'g?;g; height to centre of vortex of 0.71 of the
100 _:02300 cavity depth.
0.50 .89 16.66  -.00009 ,-.00400 CBNELES.LON
: 056 =-{11e0 Cavity flows are particularly important
_ when considering the fundamental characteristics
£ s i of flow in porous materials. The nature of heat

Ha -'00190. and mass transfer made possible by cavity type

vortex patterns behind particles (cells) in the
micro-circulation have important biological implications. Fluidization problems, sediment
transportation, scouring of a river bed and measurement of the texture of fleeces and fabrics -
all require an understanding of cavity flow behaviour before a detailed analysis of the natural
problem can be undertaken.

The numerical solutions presented here represent an approach to the problem which has
. become practicable with the advent of present day computational facilities. Non-linear flow
characteristics can be included without special problems. Additional experimental work is
required to show conclusively the accuracy of the results. All evidence available appears to
show agreement with the numerical results. The numerical solutions provide details of all the
flow characteristics including velocity and pressure distributions, and vortex patterns. Such
details cannot easily be measured experimentally particularly at low Reynolds numbers.

More complex boundary geometries and even three-dimensional problems can be attacked in a
similar fashion but inevitably will require more detailed programming, computer time and capa-
city. Higher Reynolds numbers may be included and non-rigid boundaries can be treated in
unsteady problems using a marker and cell technique (12) however such problems require compu-
tational facilities - of time and memory size — at least one order of magnitude above the
requirements of the problems discussed in this paper. =
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