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Quasi-steady analysis is applied to oscillation in the transverse (cross
wind) mede and the torsional mode (about the vertical axis) of a segment of a tall
rectangular building subjected to wind loading for the wind direction near normal
to one face. Previous theory on the one degree of freedom galloping instability
of square prisms is extended to include the torsional degree of freedom. This
dynamically coupled system is then considered for stability, and the conditions
that define the regions of stable and unstable "static'" divergence and divergent
oscillation are determined. If wind tunnel tests of a model of a tall, slender
rectangular building are being considered, the necessity to model the torsional
rotation appears to depend primarily on the magnitude and sign of the rate of
change of aerodynamic moment with angle about the vertical axis.

* J.W. Saunders, Graduate Scholar, Department of Mechanical Engineering, Monash University.
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amplitudes associated with the complex root A;

ith coefficient of the characteristic equation;

cross-wind building breadth;

drag coefficient of building segment;

1ift coefficient of building segment;

moment coefficient of building segment;

cross-wind aerodynamic force coefficient;

equivalent viscous damping coefficients in degree of Ffreedom 1 and 2;
aerodynamic drag on the building segment;

streamwise building depth;

base of natural logarithms;

resultant aerodynamic force on segment;

aerodynamic force component is the y direction;

test functions;

rotational moment of inertia of the building segment about its vertical centre of
gravity axis;

unit imaginary number;

building stiffness for the segment in degree of freedom 2 and 3;
aerodynamic lift on the building segment;

a characteristic length;

mass of the building segment;

aerodynamic moment about the vertical centre of gravity axis of building segment;

generalised co-ordinate of the building segment;

real part of complex root Aj

cross-wind reference area of building segment;

time;

wind velocity vector;

wind velocity vector relative to the building segment;

reference earth axis from the base of the vertical centre gravity axis of the build-

. ing towards the wind vector U;

body axis.rotated © from X;
reference earth axis perpendicular to X;
body axis perpendicular to X';
maximum vibrational amplitude of y at time t=0;
cross-wind displacement relative to earth;
cross-wind velocity and acceleration relative to earth;
angle of attack of the body axis X' relative to U_ .3
- AR ; . rel
fraction of critical damping in degree of freedom 5% and 3i
rotation of the building referenced to the X axis;
maximum vibrational amplitude of © at time t = 0;
rotational velocity and acceleration relative to earth;
exponent, root;
air density;
undamped mnatural frequency of building segment in degree of freedom 2 and 3 (rad/sec)
partial derivative; and
lateral and rotational degree of freedom subscripts in the y and @ modes of vibratien,
respectively.
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1. INTRODUCTION

0f the several forms of aeroelastic behaviour of bluff bodies that have been identified, the
best known perhaps, is the vortex-excited oscillation, where the fundamental frequency of the
Karman vortex street coincides with the natural frequency of the transverse mode. Galloping
transverse vibrations represent another form of self-excited phenomena which will occur in a
single degree of freedom body. Galloping was first described by Den Hartog (1,2). Since then it
has been extensively studied, and summarised by Scruton (3), Richardson, et al. (4), and others.

For square prisms, Scruton (3) determined a procedure for evaluating the steady amplitudes
due to galloping, based on a quasi-steady approach. Parkinson, et al, (5) who solved the problem
using nonlinear analysis, considered the instability using phase-plane analysis and validated the
use of the quasi-steady approach in the wind tunnel for sharp edged, symmetric cross sections
(5,6). Davenport (7) suggested that galloping instability may become a problem in some types of
light tall buildings.

This paper forms part of a continuing study of wind effects on tall buildings and extends the
previous work on galloping to flutter by incorporating the torsional degree of freedom about the

vertical axis. The stability of the building under wind action is then considered.

2. TRANSVERSE AERODYNAMIC FORCE

It has been shown (3,5,6) that a rectangular building is most sensitive to cross-wind
oscillations, generated by galloping excitation, when the wind direction is near normal to one
face.

X and Y are earth fixed
axes with X directed towards
the freestream wind direction.

FIG. 1. - BUILDING CROSS SECTIONAL SEGMENT IN AIRSTREAM

If a horizontal segment of a huilding with one face normal to the mean wind direction U, is
considered in a uniform, two dimensional wind flow with an instantaneous cross-wind velocity of ¥
,and a small rotation O, the resulting angle of attack to the relative wind direction is

" =%—e (1)

as shown in Figure 1.

In the quasi-steady approach, it is assumed that for every instant during the oscillation,
the aerodynamic force on the body is the same as for a static test on a rigid body at the same
angle of attack. This allows the aerodynamic force on the segment to be determined from the
sectional drag and lift characteristics for a given angle of attack, o. Then the drag and 1lift
force components are,

_ 2
D = C, lspUrel S (2a)
L = c, %U’ s (2b)
L rel .
where D is the drag force,

L is the lift force,

C. is the sectional drag coefficient,

CL is the sectional lift coefficient,

p is the air demsity,

U is wind velocity relative to the building, and

S I5 the cross-wind reference area which may be taken as the across wind building
breadth b by the sectional height.
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’ FIG. 2. - LATERAL FORCE COEFFICIENT IN THE Y' BODY AXIS DIRECTION )
PLOTTED AGAINST ANGLE OF ATTACK FOR A SQUARE PRISM IN UNIFORM TWO-DIMENSIONAL TURBULENT FLOW

These wind axis forces may be resolved in the Y axis force of the earth axes as

Fy = - (L cosa+Dsina) cos ©- (D cos o —L sin a) sin O (3)

This equation may be non-dimensionalised by using
F
APl . 0 - L %) D
Cy'1 7. » & = 7 2 05 S 2
1
20U 8 iDUrelS %pUrelS

Noting that U = Urel cos (a + 0), then Cy’ the lateral force coefficient is

C =-(C. cos o+ C, sin a) sec2 (o + @) cos ©

v L D

- (CD cos o - C. sin o) sec2 (o + @) sin © (4)

L
To obtain an estimate of the order of the angles involved, only the cross-wind motion was
considered of a building of height 500ft (150m) with a typical period of 5 sec., where the sway at

the top is arbitarily taken as 0.25ft (0.075m), due to a wind profile that has a velocity of
130ft/s (39m/s) at the building top. Tall slender buildings deflect in a fundamental mode shape
that can be reasonably approximated to a straight line pivoting about the base, which is due to
the combination of cantilever and sway deformations within the building. So the sway deflection
divided by the building height is 1 in 2000 which is well within stress limits for a typical
building. If the motion is considered to be S.H.M., the maximum acceleration at the top floor wil
be 0.4ft/s? (0.12m/s2) which is above the acceleration perception threshold level for 90% of the
population reported by Robertson and Chen (8). So, if the torsional rotation is neglected, this
motion will generate a maximum velocity of 0.32ft/s (0.096 m/s) and a maximum angle according to
eq. 1 of 0.15 deg. This means y/U can be taken as small and infers that © in a building would

have an allowable maximum of a similar value.

Therefore, if cos o = 1, c052 (oo + @) = 1 and O is small, then eq. & becomes,

Cy' = - (CL + CD sin a) (5)
The lateral force coefficient in the Y' body axis direction has been experimentally determined by

Parkinson and Smith (2) for a square prism in uniform flow and is shown in Fig. 2. To within
0.1%, the Cy, curve will be the same as Cy curve, if the maximum allowable © is less than 2 deg.

Parkinson and Smith (2) approximated these experimental results by a seventh order, odd poly-
nomial (the solid line in Fig. 2), which when substituted in the equation of motion for the
transverse oscillation will create a mon-linear differential equation.

As the change in angle of attack is small compared with the fairly smooth curve of Fig. 2,
particularly in the negative region from 0 to 13 deg., it appears reasonable for Engineering
purposes, to consider a linear approximation the gradient in the range of oscillation, except per-
haps for the metastable region around 13 to ‘14 deg. This gives, using eq. 1,

ac

F, = %US = (F~16) (6a)
where 3C_/5a is the gradient associated with the angle of attack about which the oscillation is

occurring.
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aC
For small a, this gradient will be approximately — CSE— i CD), so we have
3CL
= =1 —— g
F 5 pUS (5~ + Cp) (7 - U6) (6b)

The use of egs. 6a and 6b considerably simplify the equation of motion, with probably little
loss in accuracy for square prisms, but the equation will not be quite as flexible as previously
due to the need to change aCy/Ba for significant changes in o.

In this expression the y part will behave as aerodynamic damping, but the U® compliment will
behave as an 'aerodynamic stiffness', while the freestream velocity U is a constant.

As -F_ 1is in the opposite sense to the motion, like the inertia and stiffness terms, the
homogeneou$ equation of motion without the structural damping is

M e B b Koy O (7
where M is the mass of the building segment, the acceleration in the transverse direction is b
and Ky is the stiffness of the building for the segment.

It is worth emphasising at this stage that the equations and criteria developed here are only
valid for a segment, unless the mean velocity U, the building stiffness, mass and the rotational
moment of inertia about the vertical centre of gravity axis (see later), are considered over the
whole structure with regard to variation with height and the building vibrational mode shape.

If the single degree of freedom case of transverse oscillation is considered and eq. 6b is
substituted in eq. 7, then instability will occur if any force term in this equation increases in
the same direction as the motion. This is equivalent to any term being negative and so instabili-
ty will occur if

aC.
L
o . CD (8)

which is equivalent to the condition determined by Den Hartog (2).

3. TORSIONAL AERODYNAMIC MOMENT

The aefodynamic moment on a body is normally determined from
2
M =
. C %P U 8% (9)
in which the aerodynamic moment about the centre of gravity axis is given by M _, Cm is the moment
coefficient and, S may again be represented by b multiplied by the sectional h%ight, and the
characteristic length £ by the streamwise depth d. Therefore using eq. 1 and adopting the same

approach that generated eq. 6a,

aC

Mg='—5p USd-,;(;-m- ( - Ue) (10)

where BCm/aa is the gradient associated with the angle of attack about which the oscillation is
occurring.

Similar to eq. 7, -M_ is in the opposite sense to the motion and the homogeneous equation of
motion, for the rotationa% degree of freedom, without the structural damping, is
Ig = Mg 6 K3 e =20 (11)
I is the rotational moment of inertia of the building segment about the vertical centre of gravity
axis of the building, which is considered in the centre of the rectangular
section, and KB is the building stiffness in the O mode for the segment.

4. BUILDING INSTABILITY CONDITIONS

This analysis will be restricted to small amplitudes of oscillation where it is mathematically
conventimal to assume the structural damping is velocity dependent. As this is a stability
analysis, it is not necessary to consider any steady-state forcing functionms on the segment and so
the homogeneous equations of motion from eqs. 6, 7, 10 and 11, with the addition of the structural

damping terms, are

ac
My - % p US Y (§—UB)+C2y+K

3o y =9 (12)

2
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aC

and 16 - % p USd EEE (7 - U6) + e 0+ Ky =0 (13)

where c. and c, are the equivalent viscous structural damping coefficients in the degrees of
freedom 2 and g respectively. Motion in the streamwise direction is not important for stability
considerations.

If eq. 12 is divided by M and eq. 13 by I and noting that w2 = KZ/M, mg = K, /1, e,/M = 2C
and e,/M = 2;3w3, (pp. 56-4, 11), where w is the undamped natura% frequency and Z is the fract
of critical damping, for each mode of oscillation, then rearranging gives

w
fof

5¢C 2. aC
.. s e 2 T8 g
Y+ (2ey 0, -y ) THuy * ey 3 050 (14)
aed 5 . 36 3¢
Ly 2 2 U~Sd m _Usd m .
0+ 25 w00+ (w3 e )8 5 Gp L 0 (15)

Solutions of equations of this type are exponential and in the case of y, for example, would
be of the typical form

t + Y. e S

2

where Y., Y...., are the amplitudes at time t = 0 and e is the base of natural logarithms. A may
be either réal or complex, with the complex ones always occurring in conjugate pairs, such as
A=+ i w.

y = Yle

So terms may appear in the form

ve ™" (17a)
which will be stable if r is negative or unstable if r is positive, with the amplitude increasing

with time, which by convention may be referred as 'static instability'.

If A is complex the corresponding term will be of the form

f.e (r +1iwt L Y.e (r - i w)
1 2
which may be rewritten as
Tl :
e (A1 cos wt + A, sin wt) (17b)
where A, =Y. + Y, = i(Yl - Yz). As A, and A, must always be real, this implies that Y, and ¥

must be a complex conjugate pair. In %his case the motion corresponding to A is oscillatory. If
r is negative, the motion is a damped convergent oscillation, but if it is positive, an unstable
divergent oscillation occurs, which may be termed a 'dynamic instability'.

If it is assumed that egs. 14 and 15 have transient solutions of the form

elt
1
At
e = Gle
Substituting these solutions into egs. 14 and 15 and cancelling the common exponential term of

ert since the degenerate case when e € = 0 is not of interest, then

y=Y

3c 2, 3C
2 o) S R 2 U8 7 g
A"+ (2 5y 0w, = oy 550 A+ w,l ¥ * ey e 90 (18)
2. 8C

U°sd “m.. . _ (19)
5= —ga 0 Loyl

aC
Usd “m A 2 2
- — +
= Y+ VH2 74 04 A+ (m3 p

No solutions exist for the unknowns Y{ and ©; in these types of simultaneous equations con-
taining the parameter A, unless the determinant of the coefficient matrix is zero. This stability
determinant when expanded and set equal to zZero, produces the "characteristic' equation of the
dynamic system, (pp.193,9;11 and others), which is :
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4 3 2 -
A+ ag A +a2?\ +a3)\+aa—0 (20)
where o ac
2y = 205, wy F Ly ug) - ey e)
2 3C ac
_ 2 2 U'Sd m s Ty
a8y =Wy *uy ooy gg v 283 03 (28, 0y - egy gy )
ud BCm mg aC

8y = 0wy dhy By iy Ky W) ¥ gy (35, B, 35 SRR
S uJ2 (m2 4+ 25d aCm

4~ g Mg T RTar g

The conditions for there to be no unstable modes of vibration in the solution of the

equations of motion may be determined from the characteristic equation, by the use of Routh's
Criteria (9, 10, 11 and others). These stability conditions are determined by the use of various
'test'functions, formed from the coefficients of the characteristic equation, which must all be
positive if all modes are to be stable. For a quartic such as eq. 20, the fourth of the four

possible test functions (pp.194, 9) is

F,=a a F3 (21)
where F3 is the third test function of the form
- 2
F3 = a; (32 ay - a; a4) - ag (22)
which is commonly known as '"Routh's discriminant".

The necessary and sufficient conditions for all the test functions to be positive are that
ay, a, and a, are positive and that F, is also positive, which together, infer that a, must also
be positlve ?9, pp.195). Duncan (12) has shown that

.(a) if only a, <0, then one real root of eq. 20 will be positive and so one divergence

will appear in the solution;
(b) if only F.<0, then the real part of one pair of a complex pair of roots will be

positive and so a divergént oscillation will occur in the solution;
and that these criteria define, in the case of (a), the boundary between stability and static in-
stability, and in (b) the boundary between a stable and a divergent oscillation.

Firstly, considering case (a) from these conditions and eq. 20, static instability will occur
in the torsional mode if

BCm ZImg
T ST (23)
ol pUZSd

Noting that w§ = KB/I and eq. 9, eq. 23 becomes
Efﬂ = K3 (24)
ao

which is apparent from inspection.

To obtain an approximate value of the torsional instability threshold of 3C /3a for square
buildings in uniform flow, a unit segment at the top of the B.H.P. building under comstruction in
Melbourne was considered. This structure has a height of 500 ft. (150 m), is 126 ft. square
(37.6 m), with an effective mass of 1.1 x 106 kg) giving an effective rotational moment of inertia
about the elastic axis of 1.5 x 10° slug. £t2 (2 x 109 kg m2), the velocity at the top of the
building was taken as 150 ft/sec (45 m.s ). The term effective' is used because an assumption
of the torsional mode shape being a cyclicly rotated equivalent to the transverse mode shape, in
which the deflected shape was approximated by a straight line pivoted about the base, divided the
mass and rotational moment of inertia by three. There is no reliable estimate for the torsional
period, but recent reports on reasonably similar buildings (13, 14) suggest that the torsional
period, within a factor of two, is the same as the mean sway period, and so the period was taken
as 5 sec. Substituting this data into eq. 23 gave BCmfaa = -11 per rad.
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From preliminary static tests by the author on a pressure tapped, prismatic model of a square
building with a 5 to 1 aspect ratio (height/breadth) immersed in a simulated suburban profile in a
1 metre square wind tunnel, the 3Cp/dc curve was found to be a stable positive slope from 0 to
about 15 deg. The Reynolds Number was 65,000 at the top of the model and the model was immersed
to a depth of 50% of the boundary layer height. Between a plus and minus 5 degrees, angle of
attack BC /9a was found to be about 0.2 per rad.

So at this stage it appears unlikely from the sign and magnitude of these values of 3C /Bu
that any similar structure under these conditions would become torsionally unstable.

Secondly from case (b), a divergent oscillation will occur if, from

al(a2 a; - a; a4) - ag < (25)

In order to simplify this condition, the data for the B.H.P. building mentioned previously
was substituted into eq. 25 with the addition of the following data. The fraction of critical
damping taken as 0.0l, the period changed to 211 sec., and the depth and breadth rounded off to
100 ft. (30m). acC /au was taken to be of the potentially unfavourable sign, -0.2 per rad., and
gimilarly, from F1g 2, fora =0, BC /30 = 2 per rad, was substituted.

To determine the threshold values of either 3C_/3a or 3C /au that will define the boundary of
a transverse or a torsional divergent oscillation, 1t was found that by changing the magnitude of
a, or a, by about 1% after using the above data, provided that the transverse and torsional
natural” frequencies are approximately unity, eq. 25 could be reduced to

a; aj (a2 =y = 19t 0 (26)

i, j =1 oxr 3.

where

If i =3 =1 or 3 then only a, = a, - 1 < 0 can produce a divergent oscillation.

If i =1 and j = 3 then,
(1) a, < 0 generates the condition that a divergent oscillation will occur if

3c - l»Ml(Z:2 w, + Tq w3) e
an p US
which is equal to about 5 per rad. for this data. If ¢, w, = 0 then this condition reduces to

that found by Den Hartog (1) for the galloping of transfisSion lines and also by Parkinson (3) for
a square section in a two dimensional uniform flow oscillating in the transverse mode.

(ii) as < 0 generates the condition that a divergent oscillation will occur if

aC w
_y 4 2
2 pUS 0y Gy w + 3z, wg) (28

when the BCm/Eu term is eliminated from a, which changes the magnitude of ag by about 0.5% for
this data. 9C_/8a will again be about 5.

(iii) For the condition a, = 8, - 1 < 0, substituting for a, and as this inequality

becomes
aC 2 aC
g, 4 4 3 Us. y _ 2, u%sd *“m
wy F w3 = wy wy = L+ ATy, Ty wgm ey Ly wg ottt (1 -wy) poe oE < 0 (29)

If a similar building to that being considered is designed so that the transverse and
torsional periods are the same and equal to 2l seconds, i.e. w,= then the 3C_/8a term plus
the first four terms in eq. 29 vanish and so a transverse dlvergen% osc1llat10n w1Tl occur if

aC

o A

oo ’ pUS EZ W5 (30)
which is the same as eq. 27 with g = 0, which is that found by Den Hartog and Parkinson and

has the value 2.5 for the building daga being used.
If however there is a 10% shift in the periods away from 2Il seconds, the contribution of the
BCy/Ba term in eq. 29 will be less than 1%.
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So, if acy/au is eliminated, €q. 29 becomes, after factorising the first four terms,

g - 3¢
2 _ =l 2:  ‘gsd Unm
(g =) (1 =g Yok & Bpuug Gying b (L =) e Sorsaam s (31)

So a divergent oscillation in the torsional mode may occur if

9C 4r. W, Ty
2
aum D oL e m3) s 2 22 3.3 ] 2I 32)
(1-m2) pU” 8d
and using eq. 9,
aM & Eisy Wi By (8
2 2 2 3
Eg” [EL ~ i) = 23 i - (33)
(1 - w,)
when the building parameters are similar to those mentioned.
For w, = 1.1 rad/sec and w, = * 0.9 rad/sec BCm/Bu = - 2, but for wy = 0.9 rad/sec and
wy = i_l.% rad/sec, the gradient is 2.

4. CONCLUSIONS

The boundary criterion for static instability is given by eq. 23. The boundary condition for
divergent oscillation is given by Routh's discriminant being less than zero, eq. 25. However,
assuming that the torsiomal and transverse periods are near 21 seconds, together with small damp-
ing and typical data for a tall, slender rectangular building, the boundary conditions for
divergent oscillation may be any one of the simplified forms presented in eqs. 27, 28, and 29.

1f wind tunnel tests of a model building are being considered, the necessity to model the
torsional rotation appears to depend primarily on the magnitude and sign of 3C /da. This require-

ment can be assessed from values of 3Cm/3a determined from a pressure tapped fodel.
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