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SUMMARY

The technique of selectively withdrawing from density stratified water in
reservoirs has become widely used as a method of controlling the quality of
water released.

In this paper, the effect of different boundary shapes on the ability to
selectively withdraw a single layer from a multi-layered fluid, is examined.
The two basic geometrical shapes investigated are the withdrawal through a
contraction with the crest of a broad-crested weir at its minimum width and
the axisymmetric withdrawal over a weir. The theories used in this invest-
igation have been verified experimentally.

The results indicate that the selective withdrawal process becomes more
sensitive to boundary geometry as the density difference between the flowing
layer and the denser stationary layer beneath it, decreases.

N.W.Ray, Water Research Laboratory, School of Civil Engineering, University

of New South Wales.
1.R. Wood, School of Civil Engineering, University of Canterbury, Christchurch,N.Z,
K.K.Lai, Water Research Laboratory, School of Civil Engineering, University

of New South Wales.

154,



Selective Withdrawal from Density Stratified Fluids in Reservoirs . : RAY, WOOD & LAI

INTRODUCTION

Density stratification of the water in a reservoir has a large effect on the movement of
that water within the reservoir. As the quality of water contained in reservoirs, cooling
ponds etc. is often interrelated to density (temperature, dissolved salts, suspended sediment,
dissolved oxygen etc.) the management of the quality of water released depends to a large ex-
tent on how well the water movements can be predicted and controlled. The selective with-
drawal technique, whereby the water released from a reservoir can be chosen knowing the
density stratification conditions and given outlets at various levels, has become widely used
to this end. (A.S.C.E. Task Committee on Outlet Works, (1) ).

In this paper, two cases of the flow of a multilayered fluid are examined:

(i) Three-dimensional flow from a reservoir through a smoothly contracting channel
with a definite minimum width and with the crest of a broad- crested weir at the
point of minimum width.

(ii) Axisymmetric flow from a reservoir over a broad crested weir at the exit.

For both flow cases, the pressure distributions within flowing layers are assumed to
be hydrostatic. This assumption is an extension of the one~dimensional approach used in
open channel hydraulics (Henderson, (2) ) and is valid provided that streamline curvature
is small. ' The fluid is assumed to be inviscid and the flow is considered to be steady.
This latter restriction is of minor importance provided the reservoir is sufficiently large
so that the time for a particle to travel through the contraction is short compared with the
time for streamline patterns to change due to the withdrawal of fluid from the reservoir.

In the flow situations examined the reservoir will be considered to contain three stable
layers, the uppermost of which always remains stationary.

The conditions under which the weir prevents withdrawal from the lowest layer with a
single layer being withdrawn from the reservoir will be examined for each case (see Figure 1.

The effect of different boundar.y shapes on the selective withdrawal process is examined
using the theories derived.

THE SELECTIVE WITHDRAWAL FROM A SINGLE LAYER

Case (i): Withdrawal from a reservoir through a contraction with the crest of a broad -
crested weir at its minimum width.

Let the shape of the weir be given by h = h(x) and that of the contraction by b = b(x) "
and suppose that the total depth behind the weir (Y{ + Y3) is known. However, the individual
values of the layer depths (Y, and Yg) are not known. It is then required to determine the
minimum depth of layer 1 (Y1) such that there is no withdrawal from the lower layer.

It can be shown that critical depth must occur at the point of minimum width and weir
crest for the flow of a single layer (Henderson 1966). Thus the discharge from layer 11is
given by (3

- % A?? £ Yy by (2 ¥ ° | (0
where @Qp = the volumetric discharge from layer 1
A = the density of layer 1
AR = the density difference across interface 0-1
g = gravitational acceleration :
bym = the minimum width of the contraction
Yi¢ = the height of the interface 0-1 above the weir crest
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which for a given weir and contraction depends only on the conditions in the reservoir,

Assuming that velocities in the reservoir are negligible, the energy equation along the
interface 0-1 upstream of the point of contact, (A), is

2
1 =
3 IFI VSRl § Bl g h (Y1 + YZ) (2)
2
where IF 2 A ( 5} | o o (3)
1 Aﬁ 9 byl ! yl
and IFl = a densimetric Froude Number of layer 1 at any point
yy = the depth of layer 1 at any point
Ta = the depth of layer 2 at any point
h = the height of the weir at any point
b = the width of the contraction at any point

Upstream of the point of contact we also have the condition of hydrostatic pressure along
the x-axis -

y, + (1+Q(y,+h) = dY + (1+4) Y, (4)
where ok = %%

the density difference across interface 1-2

o

Now Equations (2) and (4) must hold simultaneously at the point of contact, thus by
eliminating the term (yg + h) from (2) and (4) we get the equation

%(1+c£)IF12y+y1 -y (5)

1 1

which must hold at the point of contact of the interface 1-2 with the weir. By varying the
position of the point of contact x,, and solving for y, at this point using equation (2}, a plot

of Yl versus x, can be obtained and the minimum value of Y1 (= Yl) selected.

It can also be shown that at the point of contact
(1+oC)IE‘12<1 (6)

and thus the search for the minimum value of Y4 should only start after this requirement is
satisfied.

Case (ii): Axisymmetric withdrawal from a reservoir over a brozd-crested weir.

The axisymmetric flow of a single layer from a reservoir over a broad-crested weir
differs markedly from the flow case just considered.

Consider the situation illustrated in Figures 1(b) and 1(c).
The energy equation along the interface 0-1 is

1 oA S 2
2Aﬂ3 21‘I’XY1

+ yi+h = (Y + Yy 1)

where x = the radial distance to a point

2

or Z B 5 ¥ +hs (Y, + Yy) (8)
where IE‘12 - _A ( ol )2 1 (9)
ALY 2wxy, Y1
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Differentiating (8) gives

N pd. L
5 1 &
- (10)

(1 - 72

dx

Now impose the condition that _911 must remain finite (i.e. there can be no discontin-
uities in depth along the interface). ¥

Thus, when IE‘12 = 1 (critical flow)

d
zl w2 - e L (11)

d S
otherwise -d—f;l goes to infinity.

There'fore at the control we have

dh

I, % F 5 (12)

Substituting IE‘12 = 1 into Equation 8

2

Y5 (Y1+Y2)—h] (13)

Solving (11) and (12) simultaneously, gives

dgh _ 2f 4

b & '& = '§ (Yl & i Y2) = h] (14)

Given the shape of the weir h = h(x), equation (14) can be solved for x - the position
of the control - apd by substituting into (11) and (12) the depth at the control and the dis-
charge from layer 1 are found.

From equation (14) it can be seen that the position of the control for a given weir is a
function of the height to the interface 0 - 1 (i.e. Yq + Yz), and the georgﬁtry of the weir.
Also, as the term EYl * Y2) - h|must be positive, then at the control = must be positive
(asx > 0 always). Thus thé control for the axisymmetric flow of a single layer
cannot occur at the crest of the weir but must occur downstream of the crest.

Now having determined the behaviour of a single layer, the minimum depth of layer 1
for no withdrawal from layer 2 is determined in the same manner as for Case (i) using
equations (5) and (6), the only difference being that for the axisymmetric flow case

2
2 £ Q |
F_° = e — = 15

1 g APy (21rxy1) Y1 f (15)

Experimental results obtained for both cases have agreed closely with the predictions
of the theories. It has been observed that for a given value of Y; layer 2 begins to flow at
a slightly lower value of Y4 than the theory predicts. This would be due to viscous effects
which are not accounted for in the theory.

DISCUSSION OF THE RESULTS.

The effect of the value of & (= Aﬁ/Aﬁ) is illustrated in Figures 2, 3 and 4. For a
given geometry E!Lnd value of Y; the minimum depth of layer 1 at which there is no withdrawal
from layer 2 (Yl) increases as the value of ¢l increases (i.e. as A_g_ decreases). This
is to be expected as withdrawal occurs from the entire depth of the reservoir when A_pz
approaches 0 (i.e. o approaches infinity).

In addition, the sensitivity of the value of Yll to changes in geometry is significantly
dependent upon the value of < “iaawec 2 and 3 show that a change in geometry (e. g. by
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changing the shape of the weir profile from W1 to W2) produces a significant change in the

value of Y1 when e = 100, but has virtually no effect when of = 1.

This effect may be explained by considering the energy equation along the interface

1-2: 5
. ) Vi (
= SN /i AR i 16)
% Ap, 2g

the elevation of a point on the interface above the
level of the interface in the reservoir

where V7

Vi = the velocity of the fluid in layer 1 at the point

From Equation (16) it can be deduced that a change in V_ at a point (due to a change in
geometry) will have a greater effect when Aﬁz is small than when Ajo9 is large.

In comparing the withdrawal through a contraction, which has the crest of a broad-
crested weir at the minimum width (case (i) ), with the axisymmetric withdrawal over a
broad-crested weir (case (ii) ) it should be noted that the length of the weir crest in case(i)
(by,) has been made equal to the length of the crest of the axisymmetric weir (= 2Wr,, where

r. = the radius to the weir crest). Figure 4 indicates that, for a given value of Y, the
value of Y is greater for case (i) than for case (ii) when the weir profile is the same in
each case. The difference between the two cases may be explained as follows. In case (i)
the control for the discharge from layer 1 is fixed at the weir crest. However, for the axi-
symmetric flow of a single layer over a weir, the contrel occurs downstream of the crest
and its location is a function of the shape of the weir and the level of interface 0-1 in the
reservoir (as implied by Equation (14) ). This means that in the axisymmetric case the
value of the densimetric Froude Number of layer 1 (IF‘I) at the crest of the weir is consider-
ably less than the critical value of unity, which is the value of Iy at the crest of the weir in
the casge of the withdrawal through a contraction. Equation (6) then implies that (for a given
weir profile, a given value of Yy and a fixed value of &£ ) the point of contact of interface
1-2 with the weir for case (i) will occur further upstream, and henFe at a lower elevation,
than for case (ii). Furthermore, this implies that the value of Y, will be greater in case
(i) than in case (ii).

It has also been noted that the control for the axisymmetric flow of a single layer over
a weir moves closer to the crest of the weir with the following changes in geometry:-

(a) Changing the shape of the weir profile from W1 to W2 (i.e. increasing the steepness
of the faces of the weir).

(b) Increasing the radius to the crest of the weir.

Asg indicated in Figure 4, the effect of the control in case (ii) moving closer to the weir
crest' (the location of the control in case (i) ) is to reduce the difference between the values
of Y. in each case (for given values of Y{ and &£ and a fixed weir profile).

i
CONCLUSION

The investigation described has demonstrated the striking effect of boundary geometry
on the ability to selectively withdraw from a stable multi-layered fluid in a reservoir.,

It has been show that the selective withdrawal process becomes more sensitive to bound-
ary geometry as the density difference between the flowing layer and the denser stationary

layer decreases.
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