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SUMMARY

The various forces involved in tle accelerated motion of & body in a
viscous fluid are examined. The equation of motion for & sphere,in parti-
cular,is discussed. Accelerated motion of a sphere in layered fluids is
analysed and solved using numerical integration technique. General solution

procedure for the motion of sphere in multilaeyer fluids is indicated and
some particular cases are analysed.
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INTRODUCTION

The fall velocity of particles in a viscous fluid is an important aspect
in the problems of Sediment transportation, Mineral seperation, Gravimetrie
analysis and other related disciplines. Stokes(1), Basset (1), Brush et al (2)
Hjelmfelt et al (4) etc. have reported the formulation and solution of this
problem. The fall velocity of a spherical body in a layered fluid medium is
of more significance ifv:dealing with the density current deposits in reservoirs.
In such cases the density end viscosity of water vary with depth.

In this investigation the accelerated motion of a spherical particle in a
layered viscous fluid is analysed with & view that this might throw some light
on the mechanics of the actual sedimentation problem that takes place in large
and deep reservoirs and rivers. In classical studies, usually, the steady state
velocity given by Stokes, is generally used, thus neglecti the accelerated
motion of the spherical particle before it reaches the te?ﬁfnal velocity.

The basic studies on the accelerated motion of a sphere in a homogeneous
viscous fluid were due to Basset (1), who presented the solution neglecting
convective acceleration terms of the Wavier-Stokes equation. Brush et al (2)
and Hjelmfelt et al (4) have presented their solutions in two different ranges
of density ratios.

In this investigation, the variousforces involved in the accelerated motion
of a sphere in a visaeous fluid are considered. Accelerated motion of a sphere
in layered fluid medium is analyzed using Runge-Kutta fourth order numerical
integration technique, takingthe velocity of the spherical body at the end of a
layer to be equal to the initial velocity of the sphere for the next layer. Thus,
the solution procedure boils down to solving the problem of & sphere with and
without initial velocity in any layer. A program is prepared for a 'n' layer
case and a three layer problem, in particular, is presented graphically with
different non-dimensional viscosity and density ratios.

ANATYSIS

The accelerated motion of a sphere in a homogeneous viscous fluid has been
derived by Basset(1), assuming the resistance to the sphere motion to be a linear
function of the velocity amnd neglecting higher order velocitX terms. Thus, the

forces involved in such a case can be obtained as follpws (3
1. Buoyant force = (ﬁs - f) g vee (1a)
2, Inertia force = - msﬁ eee (1B)
3. Virtual mass effective force = = kmV ' Rees (1)

d
4, Dissipative forces on the sphere = 3TMdv —% d2Jﬂ1 R)ae dr
toovew

04T &t sen (14)

The displacement co-ordinate of the sphere is considered positive in the
verticelly down ward direction, and,

Density of the sphere material,
Mass of the sphere,

nn

Density of the fluid medium
E's/g = Density ratio,
Mass of the volume of the fluid displaced by the sphere,
Added mass coefficient = 1/2 for the sphere,
Viscosity of the fluid medium,
ﬁL/(‘ = Kinematic viscosity of the fluid,

Acceleration due to gravity, ‘
Diameter of the sphere, and, v = Velocity of the sphere at any time,t.

am o F R e Y e
i
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The integral term in Eq. (1d) is & type of history term indicating that the
resistance to the sphere motion at any time, t, due to unsteadiness of flow
is, in part, a function of the resistance to motion at a previous time. Thié
accounts for the transient character of the velocity distribution. Thus, the
equation of the force balance for the sphere motion can be wr%?ten as;

a d
msﬁﬂ-kmr% =(ms-mf)8'3“f‘dv‘%d2J”+!#J§E=dT .ee (2)
@ Yt-T

Now, Eq. (2) has to be solved using two initisl conditions as follows:

Case I: Initial Velocity is Zero

If the particle starts from rest from tlke position x = 0 2t time =0,
and v = dx/dt = 0, using Abel's Transformation(3), the history integral can
be evaluated as; 4

b
1&?‘?\1‘“an$‘£ dt = 1&"(’.1}.\[‘“\;‘ v
A RIE SR - vl =0 e A3
=0

Using Bq. (3), Eq. (2) can be written in the non-dimensional form as;

av
Ryt * (1+ .442/VT)V = v, eee (4)
where, R, = (R+k)/18.0; T = ¥t/a% V= (av/¥); Vy= Stokes terminal -
velocity = (R-1) gd>/1879™ eee (5)
Defining; Y=V/V.t, ese LR .o-_(ﬁ)

in terms of these non-digensional parameters,Eq. (4) can be rewritten as;
%% = 1 - (1+ .442/ﬁ)Y]_/RA .

Case II: Particle Starting with an initial velocity 'v. '
If v. is the initial velocity of the sphere at the surface of & fluid,
the same céan be expressed in tke non-dimensional form as;

: B
where, Vi is the Stokes terminel velocity of the sphere in that fluid

layer under consideration. Ea. (7) can now be written 2s;

%% =1 -+ 442/N°T) ﬂ/RA ' vow L9)
where ¥=(v- vo)/(vt - Vo) i wae 0103

Now, Egs. (7) and (9) have to be solved numerically. 4 fourth order
Runge-Futta method will be used for solving Eds. (7) amd (9) end accord-
ingly they are reduced to sets of two first order simultaneous differential

equations.
Case I: Initial Velocity is Zero

& =1 oo E71)

= [ - Qeaas2/ND) Y] /R cer {12)

in which, X = x/a.Vt : o Siee sss (13)
Eqs. (11) amd (12) have to be solved with the initial condition

Xlpg_og=0 cee(14)

Y|p o= . eee (15)
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The limiting value of (%%) can be obtdned as
T-=0 :
dyY
ET_ - 1/RA ° 0w EE] Y (-16)
T=0

Gége IT: Initial Velocity is Y,

Eq. (9) in this case can be written as;

& =7 oo (1)
a - [1 - (1+ .4a2/VT) T] /R, ... (18)
where X = (x/a = T V)/(Vy = V) i ose(19)

Egs. (17) and (18) have to be solved with the initial conditions;
=0 e o e LR 0‘00(20}

»al

1]

0

i

0
IT =0 = - ...(21)

The limiting velue of (%%)lm-o can be obtained as;

ay
ar P
Now, for this case (V/Vf} and (x/4 V%), the non-dimensional values of
velocity and displacement can be obta ned, knowing the values of T at
ahy stage from Egqs. (10) and (19) as:
(V/v,) =V, + (V) ¥ . ... (23)
(x/a V)= VT + (1-V ) X iew « o224}

= 1/Ry s 55 cos . ¢ +(22)

Motion of the sphere in Layered Fluid

If the sphere starts with zero initial velocity in the first
layer, the displacement - time relationships and the velocity-time
relationships can be obtained using Xgs. (11) to (16) of Case I. If the
initi2dl velocity is v, in the first layer, the solutions can be obtained
using Zgs. (17) to (28) of Case II. As soon as the sphere reaches the
interface between any two layers, the time~-displacement-velocity relution-
ships can be obtained using Eas. (16) to0.(21) of Case II with the
initial velocity in the second layer being equal to the final welocity of
the sphere in the first layer. Now, considering a 'n' layered fluid
system, the procedure can be continued using equations of either Case I
or Case II, as the case may be, with the initial velocity of the sphere
in ith layer (i¢ n) being equal to the final velocity of the sphere in
(i = 1)st layer, the displacement being compatible.

RESULTS AND DISCUSSIONS

A 3-layered medium is considered for illustrating the solution
procedure with the following parameters:
d

st layer: Ry= q'= 10 v
2nd layer: Rz :95}& = 5 4 '\’3./"‘ =%
3rd layer: R3 ,?,“;%: 2 5 = 17,/-,99_ = 14

The results are presented in terms of the non-dimensional parameters
(expressing these par:zmeters in terms of the prope. ties of the fluid of
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the first layer). The non-dimensional final velocity (V/Vf)i of the top ith

layer can be converted into the non-dimension&l initial velocity of the
(1+1)st layer, by miltiplying (V/Vy); with [(By = 1) ¥y, 4/(R; 4=1) ¥,].

The solutions for a 3-layer case using the paramefers given earlier are
shown graphically in Figrs. (1) and (2). These can, in gemeral, be extended
for a wide range of the problems of practical significance.

CONCLUSIONS

A simple numerical teclmique has been presented to analyze the
accelerated motion of & sphere in layered fluids. The usefulness of this
technique has been tested by comparing the results obtained using this
numerical procedure with some existing results elsewhere (3,5). It is
expected that this teclmique can be successfully applied <for more complex

situations also.

N
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