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The Entraining Hydraulic Jump
By D. L. WILKINSON, B.E., GRAD.I.LE.AusT. and I. R. Woob, Pu.D., M.I.LE.AusT. *

Sumunary.—This paper presents the results of a study of the zone of
flow establishment of a steady two-dimensional horizontal density current.
It is shown that the form of jump in this zone depends markedly on the
tailwater conditions and for a jump that is not flooded two distinct types
exist. These have downstream Froude numbers of 1.0 and of 0.5 respec-
tively. Detailed measurements are presented for the jump with a down-
stream Froude number of 0.5.

LIST OF SYMBOLS
Depth of flume.
Froude number.
Gravitational acceleration.
Entrainment parameter.
Flow force.
Flow.
Reynolds number.
Conjugate depth ratio.
Density correction factor,
Velocity correction factor.
Local velocity.
Characteristic velocity.
Local depth.
Characteristic depth = depth to interface.
Critical depth of upstream discharge.
Dimensionless depth.
Density of ambient fluid.
Local density deficit.
Characteristic density deficit.
Flow force loss ratio.
Kinematic viscosity.

Subscripts referring to the upstream and downstream
sections respectively.
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1.—INTRODUCTION

The flow under investigation is that of a hydraulic jump in a two-layer
system. The fluids are of different densities and are miscible so that there
may be mixing of the two layers in the turbulent region of the jump. This
type of situation is found whenever a fluid is discharged from an outlet
under a horizontal boundary into a fluid of greater density, or over a hori-
zontal boundary into a fluid of lesser density. An important example of
a flow of this type is the discharge of hot water into a power station cooling
pond.

For the case under analysis the Boussinesq assumption is made. That
is, it is assumed that the density difference between the moving layer and
the ambient fluid is so small that variations in the inertial forces can be
neglected. The analysis of the entraining jump is very similar to that for
a normal open channel jump, except that the equation of continuity is
replaced by the equation of continuity of density excess or deficit and that
an extra variable, the quantity of entrained fluid, is involved. Initially then,
the equation for the conservation of the sum of horizontal momentum flux
and pressure force per unit span is examined (Ref. 1). This quantity will
be referred to as the flow force after Benjamin (1962, Ref. 2). There are
insufficient equations available to obtain a complete solution and for any
value of downstream depth there are two downstream discharges which
will satisfy the flow force equation. However, from a consideration of
this equation the upper and lower bounds of the possible discharges are
obtained.

2.—THEORY

2.1 The Flow Force Equation :

Consider a fluid flowing as in Fig. 1. Let the depth y* of the density
current be defined by the distance between the visual interface and the free
surface or roof. The characteristic velocity %’ can then be defined by
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The flow force M at a section may be written as

D py D
M:f f Apgdydy—l—j putdy
a 0 0

It is convenient to define Ap’, S, > and S; by

1t po
Ap' =— ,f uApdy
Uy Jo
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S, z,—,J f Ap dy dy
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where S, and S, are dimensionless velocity and density correction factors
which depend on the velocity and density distributions. For the case
where the velocity and density distributions are rectangular S,, and S,
equal unity. Substituting the above into the expression for the flow force
the following equation is obtained:

S
M=S,pu?y + E”Ap'gy'3

or in terms of the total flow
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Fig. 1.—Definition Sketch of Density Current.

It is now convenient to define the inflow volumetric discharge and den-
sity difference as the characteristic discharge and density difference and to
write Eq. (1) in a non-dimensional form. A characteristic depth does not
need to be defined as it may be obtained from an arrangement of the already
defined variables, i.e.,

PO ]”3
Apr g

It is worth noting that y,, is the critical flow depth defined from the
Froude number equals 1.0 and since the flux of density difference is a

Hieli=

s

£ g = constant), y,. is proportional to Q.

constant (Q Now let the

new variables K and Y be defined by
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Fig. 2.—Flow Force Diagram.

where K is the entrainment parameter, O, is the discharge downstream of
the jump and v} is the depth downstream of the jump.

Now substituting the above into Eq. (1) for the downstream condi-
tions one obtains

M; y10 o S K2 Sia APtzgyﬂ V.2
p Q,® Y, 2p O,° g
HIE Q A.F‘Il = Q. AP’E
Hence
Myt S KOsl T e @)
pQ;* Y, 2K

This flow force equation is plotted against ¥ in Fig. 2 for values of the
entrainment parameter K and for S,, = S, = 1. Values of K less than one
would violate continuity and therefore are not physically possible.

It can be seen that a family of curves exists for varying values of K
bounded by an envelope. It can be shown (see Appendix A) that the
envelope and any other straight line of lesser gradient through the origin

represents a line of constant (Sm Qﬂ/S,, A_pgy,a) &. This is a type of
P

Froude number and will be referred to as the Froude number throughout
this paper. Two values of the Froude number satisfy any of these straight
lines except for the envelope where both values of the Froude number have
a value of 0.5.

Any upstream flow state can be represented by a point on the K = 1.0
curve (AB in Fig. 2). If the hydraulic jump occurs without entrainment
of the ambient fluid then the downstream state lies on the upper arm ADC
of the K = 1.0 curve at the same value of the flow force. Therefore the
conjugate depths of a normal hydraulic jump are represented by the points
¥, and¥,; on Fig. 2. Iffluidis entrained it is apparent that the downstream
depth can be anywhere between the points Y,; and Y, .

It thus seems possible to satisfy the flow force equation for downstream
depths between Y,; and ¥,,. For greater depths than ¥,, no solution
can be obtained and the jump must become flooded. It can easily be shown
that maximum value of entrainment occurs when the downstream Froude
number equals 1.0.

It is also worth noting that for all inlet Froude numbers the downstream
depth is a maximum on the envelope. However, for inlet Froude numbers
less than 2.25 the envelope is unattainable and maximum depth is given by
the non-entraining (K = 1.0) curve. The minimum downstream depth
occurs when K is a maximum up to an inlet Froude number of 7.3 and when
K is a minimum (1.0) for Froude numbers of greater than 7.3.

Finally, it is worth noting that for every point on the M, Y plane,
on or below the envelope, a cubic equation exists in K. One root of the
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Fig. 3.—Flow Force Diagram.

cubic equation is always negative and of the remaining two (K, and K;)
the lower root (K;) is in some regions less than 1.0 and in others the upper
root (K,) implies a Froude number of greater than 1.0. It therefore seems
that only the values listed below can be attained in the regions shown
in Fig. 3.

Region (1) K, only possible solution.

Region (2) K, and K, values possible.

Region (3) K only physically possible solution.

2.2 The Tailwater Conditions :

For a normal hydraulic jump to occur just downstream of a gate the
tailwater depth controlled by the downstream conditions must be the con-
jugate depth for the appropriate inflowing Froude number. If the depth
is greater than this the jump will be drowned and if less the jump will occur
downstream of the gate. The position of the jump in this case can be
determined by the normal methods of open channel hydraulics.

For the case under consideration it can again be stated that if the
downstream depth for the particular inflow Froude number is greater than
the envelope depth the jump will be drowned. In this case, the relatively
still fluid, covering the jet leaving the gate, will prevent the entrainment of
the less dense fluid and it is reasonable to expect that the analysis will
follow that of a normal drowned hydraulic jump.

If we assume a free overfall downstream of the jump as in Fig. 4 then
in the absence of friction the depth of flow in the channel is the critical
depth and thus the downstream depth is defined by a Froude number of 1.0.
The amount of entrainment is then a maximum.

In between these two downstream depths we might expect entrainment
in the jump to adjust so as to satisfy the flow force equation. It must be
emphasized however that any change in the entrainment in the jump alters
the flow downstream (and hence the critical depth (y,.) downstream of the
jump) and this for a fixed geometry (say a gate controlling the flow) alters
the downstream conditions. There is therefore a type of feedback system
and the mechanism of entrainment must itself be analysed further.

3.—EXPERIMENTS
3.1 The Experimental Equipment:

The experimental layout is shown schematically in Fig. 6. The lighter
fluid entered at A through a sprinkler system. The density flow then
gravitated through a permeable bed before flowing through the slit B into
the working section BD. Once in the working section a region of rapid
entrainment occurred followed by a steady, uniformly flowing, density
current. The density current left the working section over an inverted
sluice gate at D. Fluid was supplied beneath the entraining section of the
jump to make up for the entrained fluid withdrawn by the density current.
Care was taken to ensure that this fluid was delivered at a rate so that there
was no overflow of unentrained fluid with the density current and so that
there was a negligible circulation in the ambient fluid. The working section
of the perspex tank was 28 in. long by 12 in. wide and 16 in. deep. The
height of the inlet slot which extends the full width of the tank could be
adjusted from 0.17 in. to 0.6 in. and the sluice gate opening could be adjusted
from zero up to a maximum of 3.5 in.

The inflow was metered using a calibrated rotameter. The density
difference necessary to form the density current was obtained either by
heating the inflowing fluid or by using a fresh water density current in an
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Fig. 4—Type I Entraining Hydraulic Fump.

ambient fluid made up of a salt (NaCl) solution. In the former case the
density deficit was determined by measuring the temperatures of the inflow-
ing and ambient fluids and in the latter case samples of the salt solution were
analysed. Both the experiments and the theoretical work showed the heat
losses through the boundaries were negligible.

Density measurements within the steady uniform thermal density
current downstream of the jump were made using a calibrated copper-con-
stantin thermocouple probe wired to a micro-voltmeter. The reference
junction was placed in the inlet slot and the measuring junction was lowered
through the roof of the working section into the density current. When
a freshwater current with an ambient saline fluid of the same temperature
and density was used, measurements were made by withdrawing 10-ml.
samples through a hypodermic tube. The density of the samples was then
determined using a calibrated conductivity meter.

For the thermal density current, velocity measurements were obtained
from photographs of hydrogen bubbles pulsed from a 0.002-in. dia. platinum
wire which was placed in the vertical plane in the centre of the density
current.

From these measurements the inlet and downstream Froude numbers,
the ratio of the downstream volume flow to the inlet volume flow and the
conjugate depth ratio (r) were obtained. It is important to note that all the
downstream measurements were made at positions where the slope of the
interface of the density current was zero.

The downstream Froude numbers (F,) were obtained in different ways
in two of the series of tests.

Section 2.

M ((VING/ L’{YE? Z )/_
e S

DOWNSTREAM | ==

Section 1.

—i,

IFROUDE No.= %

REGION OF
ENTRAINMENT

AMBIENT FLUID
(oENSITY p)

SLUICE GATE
DOWNSTREAM
CONTROL

T 7

Fig. 5.—Twype II Entraining Hydraulic Jump.
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Fig. 6.—Schematic Diagram of Experimental Equipment.
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Fig. T.—Dimensionless Density Profiles.

Firstly, measured values of K and » were combined with dimensionless
S .« values obtained from hydrogen bubble photographs. Use was made of
the continuity relation between upstream and downstream sections and
the density correction factor §; was assumed to be 1.00 (Fig. 7).

D
Secondly, F, values were determined by direct measurement of f u® dy
0

from the bubble photographs, measurement of the density deficit and depth
of the downstream flow.

The results obtained by both methods were in close agreement and
are shown plotted in Fig. 11.

3.2 General Description of the Types of Flow Observed :

Firstly, it is appropriate to note that there appeared to be no difference
between the current with a density deficit caused by thermal effect and that
caused by a deficit of salt. In both cases experiments have shown that the
establishment zone of the density current was one of two types (Figs. 4
and 5).

The first type of jump (I) had an angle of spread of the visual interface
of 15 degrees and entrainment could be observed along the whole length
of the zone of flow establishment. Indeed the surface between the density
current and the ambient fluid appeared similar to that of a normal entraining
jet. Entrainment appeared to become negligibly small when the tailwater
depth reached something close to the critical depth. This type of jump
occurred when (a) starting the flow, or suddenly increasing the flow, or
when (&) a free overfall was maintained.

The second type of jump (II) resembled the open channel jump.
Backward rolling surface eddies were observed along the interface of the
establishment zone. These relatively large, slow-moving eddies covered
the high-velocity fluid and effectively prevented the density current from
entraining the ambient fluid. Thus the effective entrainment was restricted
to a region near the outlet where these large surface eddies were absent.
In this region the surface of the jump appeared the same as that of a type (I)
jump. The slope of the type (II) jump was steeper than the type (I) and
had a slope of the visual interface of 20 degrees. It was important to
note that in every case a type (I) jump first formed and then the downstream
conditions determined whether the jump remained of this type or changed
into a type (II) jump. :

Detailed measurements showed that type (I) jumps result in a markedly
non-rectangular density distribution in the steady layer downstream (Fig. 7).
This implied that the turbulence in the jump was insufficient to promote
the complete mixing of the entrained fluid. In the second type of jump
where the entrainment was confined to the beginning of the establishment
zone, the turbulence in the establishment zone permitted the complete
mixing of the entrained fluid, and the resulting downstream density distri-
bution was nearly rectangular (Fig. 7). Thus the interface was sharp and
accurate measurements of the downstream depth were possible.

Velocity distributions for the type (II) jump were dependent on the
inlet Froude number. This is shown in Fig. 8 where the velocity correc-
tion factor has been plotted against the inlet Froude number. The Reynolds
numbers of the experimental downstream flows were relatively small (400
to 1,100) and it is thought that this variation might be due to a Reynolds
number effect,
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Fig. 8.—Velocity Distribution Correction Factors (S,) vs. Inlet Froude
Number.

The Reynolds number (Re) was defined as Re = 4y

Finally, it is worth noting that during all the experiments the tailwater
conditions were not critically controlled and it appeared that the down-
stream Froude number of 0.5 was oddly insensitive to a range of tailwater
conditions. Indeed it is curious, for this implies that the depth downstream
of the jump was always the maximum possible.

3.3 Quantitative Deduction from the Experiments with the Type II

Jump:

The quantitative measurements were directed towards the investiga-
tion of type (II) jumps and it is not proposed to discuss the first type of
jump in detail. However it is worth noting that measurements of unsteady
flows (Ref. 3) imply that the downstream Froude number for the type (I)
jump is approximately 1.0.

It was appropriate to plot the experimental values of ¥, and K on
the flow force diagram. When this was done, it was noted that for type (II)
jumps all the points were close to the envelope. The ratio of the depths,
however, could not be measured as accurately as could the amount of
entrainment. Hence, a considerably more sensitive check on the closeness
of the experimental points to the envelope could be obtained using the
measurements of entrainment. Assuming conservation of momentum
the equation of the envelope may be written as

D ke
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Fig. 9.—Entrainment Parameter vs. Inlet Froude Number.
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Fig. 10.—Momentum Loss Between Sections (1) and (2).

This equation is derived in Appendix II and has been plotted in Fig. 9.
Thus if the points were on the envelope this curve would enable values of K
to be predicted. The experimental values of K §,%*?®§,'/® are also
plotted on Fig. 9 and it is noted that all the points are close to the envelope
curve. Indeed if a correction is made for the momentum loss caused by
boundary friction in the zone of flow establishment (Fig. 10) the agreement
is remarkable. This boundary friction loss obtained experimentally was
close to that calculated assuming a laminar boundary layer.

It is noteworthy that this plot implies that there was no entrainment
in the jump if the inlet Froude number was less than 2.3. This is in accord
with the flow force diagram. Indeed it can be seen in Fig. 2 that in order
to reach the envelope the conjugate function must follow the non-entraining
K = 1.0 curve until a Froude number of 2.25 is reached. At this point
the conjugate depth curve for a non-entraining jump is tangential to the
envelope. Further it was observed in the experiments that when the inlet
Froude number was less than 2.3 the eddies that were blanketing the high-
velocity current had advanced back to the inlet and entrainment was com-
pletely inhibited.

A further confirmation was obtained by plotting the downstream
Froude number wersus the inlet Froude number. This is done in Fig. 11.
All the points on this diagram were obtained by complete detailed measure-
ments of both velocities and density profiles and it is again noted that the
downstream Froude number is close to its envelope value of 0.5.

Finally, the values of conjugate depth ratio (r) versus F, for the en-
velope curve, the value of a Froude number of 1.0, and for a non-entraining
curve are plotted together with the experimental data. It is noted that,
plotted in this manner, the data do not provide a critical test for the form
of the conjugate function. This is because of the small difference between
the maximum and minimum depth attainable.
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Fig. 11.—Downstream Froude Number vs. Upstream Froude Number.
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In view of the fact that the depth of fluid at the outflow sluice could
be varied considerably, it seems significant that no downstream Froude
numbers intermediate between 0.5 and 1.0 were obtained. It was ex-
pected that the entrainment in the jump could have been controlled by
setting a tailwater depth. This was not the case and if the tailwater was set
beneath the envelope depth the flow between the jump and the control
would be steady but non-uniform. The Froude number immediately
downstream of the jump still had the value of 0.5. If the tailwater was set
higher than the envelope depth the jump would flood out as expected.

It therefore appears that in these series of experiments only two stable
jumps existed. These stable jumps had downstream Froude numbers of
0.5 or 1.0 depending on the tailwater conditions.

CONCLUSIONS

The significant conclusions from this work are:

(1) Two types of entraining hydraulic jump are possible; and,

(2) The determining factor for each is the tailwater control depth.

If the tailwater control was at critical depth then the conjugate depth
for the jump was forced to critical depth.

If the tailwater depth was subcritical and the jump remains unflooded
then the Froude number immediately downstream of the jump was found
to be 0.5 over the range of inlet Froude numbers 2.25 to 8. No entrain-
ment was observed for Froude numbers less than 2.25 for the second type
of jump. The entrainment was such- that the conjugate depth of the type
(IT) jump was always a maximum.
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APPENDIX 1

The Froude Number and the Flow Force Diagram

In this paper the Froude number is defined as the ratio of the inertial
force integrated over a section to the hydrostatic force integrated over the

section. This becomes
S, O* 1/2
A
[Sn =gy
P
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Substituting,
Y=Yy,
Q=K0O,
and using the equation of continuity of density excess, i.e.,

Ql APII = Q AP’

we obtain
Sm K3 le 1/2
F=|——.———— | iiiiiiiiiiiinns 3
S Y A 3)
T e O]
p
but
@i S
AP 1
g%
P
Hence F S, Kai
el oS Y"]
Now the flow force Eq. (2) may be written as
My, [28,K° S Y2
e | LR 2K

Substituting for F we have

My, 2F% + 1
- Iy AR A D T e e e o 4
o el 2
Hence if F, S,, and S, are constants there is a linear relationship
between M and Y.

Using this equation it can be shown that for a given M, ¥ is a maximum
when the Froude number downstream equals 0.5.

APPENDIX II

The Variation of the Discharge Ratio (K) and the Conjugate Depth
Ratio (r) on the Envelope of the Flow Force Diagram
If for the upstream flow S,, and S; equal 1.0 then the flow force
Eq. (2) may be written as
Mlylc [ Y M. Moy SnKP 4 Spe Yo?

p 0.° o 2K

0, the ratio of the flow force at Section 2 to the flow force at Section 1
may be written as

S K2 . Spa Y32
Y, 2K M,

L e 5
1 Y,® M, ©)
Ve p
On the envelope
By — SrerfShhaeL
B Sy

and from Eq. (4)

0,2 1/2 yu]n/e l: il :|.'s,f~
F = TR = A — e A T e ee eler: (6)
i [AP 1 4 {l Y Y,
—_.0 1

gy

Substituting the above into the equation for # we get after some
manipulation,

e 20 1 2F2 41

 3(Sm)*? (Sw)'P T (F)H

and this is the relationship between the discharge ratio K and the Froude
number on the envelope of the flow force diagram. Similarly if we use

e Y S ®

where r is the conjugate depth ratio, we get for the relationship on the
envelope

2 0 1

2F + 1

3U(Sna)? (Sp)¥8 ~ (2F) 3
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