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An Evaluation of the First-Order Approximation to the Direct Supersonic Blunt Body Problem

By R. C. WagE, B.E., M.ENG.Sc. and R. D. ArcHER, B.Sc., BE., M.S., Pr.D., MLE.AUST. *

Summary.—The first-order solution to the direct supersonic blunt
body problem, using the method of Integral Relations, has been studied
in order to evaluate the soundness of the approximation. Typical results
are presented.

LIST OF SYMBOLS

Symbol:
c Dimensionless sonic velocity.
C; Pressure coefficient, Fig. 11.
i A function and its derivatives.
I An integral.
J Operator, j = 0 in plane flow,
7 = 1 in axisymmetric flow.
M Mach number.
b2l Dimensionless pressure.
r Radial co-ordinate, Fig. 2.
R Body radius of curvature, Fig. 2.
S, 7 Body orientated curvilinear co-ordinates, Fig. 2.
v Dimensionless velocity component.
%4 Dimensionless velocity.
G Cartesian co-ordinates, Fig. 10.
¥ Ratio of specific heats.
) Shock detachment distance, Fig. 2.
] Body angle, Fig. 2.
% (y — 1) [2y.
@ 1 + (8/R).
é 7 [d.
p Dimensionless density.
T Streamline density function, Section 2.
X Shock wave angle, Fig. 2.
Subscript:
S Component in s-direction.
n Component in n-direction.
0 Surface value.
1or 8 Shock value.
co Free-stream value.

X Vs Denotes type of coefficient, e.g., C, is a coefficient in the
continuity equation of the term dy /ds, see Section 3.

Superseript:

* Indicates sonic value.
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Compurer Variables of Tables Ia and Ib:

DELTO 8, » Stagnation point shock standoff distance, dimensionless.
GATE Extrapolation gate, as a percentage of sonic velocity.
STEP Integration step size, dimensionless.

SLAMDA ), Radians subtended at centre of sphere by arc length s.
DELTA 5, Dimensionless shock standoff distance.

CHI y, Shock wave angle. f

VSO 9,9 » Dimensionless surface velocity.

PO o, Dimensionless surface static pressure.

PNE pnz , Dimensionless Newtonian surface pressure.

VS, VN v, 5 Up, Dimensionless local velocity components.

P P, Dimensionless local static pressure.

RHO p, Dimensionless local density.

N[DELTA 2 [8 = &.

1.—INTRODUCTION

A blunt body moving at supersonic speed through a gas, supports
an oblique, curved shock wave which is detached from the nose of the body.
Given the body contour and free stream gas conditions, the direct problem
is to find the shape and position of this shock, and gas conditions in the
shock layer between body and shock and on the surface of the body. A
detailed survey of the problem and of various methods of solution is given
in Hayes and Probstein (Ref. 10).

The principal features of flow are shown in Fig. 1. Behind the curved
shock the flow field is both rotational and compressible. All variables im-
mediately behind the shock are functions of the wave angle (see Fig. 2).

The integral method for solving first-order partial differential equations
of the mixed type was first proposed by Dorodnitsyn (Ref. 1) and termed
¢ The Method of Integral Relations . The first application of the method
to solve the blunt body problem was by Belotserkovskii (Refs. 2, 3 and 4).
He divided the shock layer into N strips to yield a set of N integral equations
and demonstrated that as N was increased the numerical solution rapidly
converged to that obtained by experiments. The numerical procedure
calls for an iteration on guesses for starting values of the integration which
must satisfy a singularity condition at the sonic position. Belotserkovskii
has since extended the method to cover real gas flows, viscous effects and
bodies at incidence and has published extensive tables (Refs. 2, 3, 4, 6 and 9.
From time to time he has published important reviews (Refs. 7, 8 and 9).

No other worker outside the U.S.S.R. and China has used more than
a first-order (one-strip) approximation, presumably because the increased
accuracy yielded by the multi-strip solutions is insufficient to justify the
increase in time needed to solve the equations. Some of Belotserkovskii’s
tabulated solutions are given to the second approximation only, and above
Mach number 10 he considers that a first-order result is sufficiently accurate
(Ref. 8, p. 845).

All of the following results are first-order (or one-strip) solutions. In
the United States the first application of the method was to symmetric
sharp-cornered bodies. The flat plate, flat faced cylinder and spherical
caps were studied by Chubb (Ref. 12), Holt (Refs. 13 and 15), Gold and
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Holt (Ref. 14). Holt and Hoffmann (Ref. 16) also treated ellipsoids.
Except for flat-nosed bodies for which Cartesian co-ordinates were used, all
these workers had followed Belotserkovskii and used polar co-ordinates
even for body shapes far removed from circular. Chenoweth (Ref. 31)
points out that this can lead to additional singularities and that this is more
likely to occur in two-dimensional plane flow than axisymmetric. Traugott
(Ref. 17) first proposed the * s-n , * body oriented *’ or ‘‘ boundary layer *
type of co-ordinate system now used by most workers for bodies of general
shape. Using these co-ordinates, Traugott (Ref. 18) has examined the
validity of the first-order theory for a variety of blunted-cone nose shapes
throughout the subsonic and supersonic flow field. He has defined a region
on a Mach number-cone angle diagram in which the theory may be used.
Archer has examined elliptic noses (Refs. 19, 20 and 21).

Xerikos and Anderson (Ref. 27) have studied the computational prob-
lems of the one-strip solution. Their results demonstrate the nature of
the instability of the solution near the sonic singularity. Kentzer (Refs. 28
and 29) has commented on this problem and interprets the singularity as
the left characteristic from the sonic point (Fig. 1). Kao (Ref. 30) has
found that by retaining one of the dependent variables as the mass flux
along the surface instead of transforming to the physical variable for surface
velocity the sonic singularity is replaced by an algebraic maximum. This
simplifies but does not eliminate the numerical difficulties at the sonic
point (Ref., 26).

Kao’s transformation is reminiscent of that used by Melnik (Ref. 35)
on an elliptic cone at incidence. He retained all of the dependent variables
as mass and momentum fluxes. This holds promise for easier manipula-
tion of the algebra since the computer itself can be relied on to perform the
matrix inversion required to obtain the solution in terms of physical variables.
Van Dyke (Ref. 32) has recently suggested that other methods be used to
overcome the “ villain of convergence *.

Vaglio-Laurin (Ref. 24) was the first to consider a blunt asymmetric
nose shape. He eliminated the need for numerical iteration by perturbing
both dependent and independent variables. However, the equations are
extremely tedious. Also, Brong and Leigh (Ref. 25) have criticised Vaglio-
Laurin’s arbitrary assumption about the location of the maximum entropy
streamline and have offered a rational approach to overcome this difficulty.
This has been used by Bailey (Ref. 26) who also adopted Kao’s technique
at the sonic point.

In the course of studies of the application of the integral method to
the flow about pointed cones, South and Newman (Refs. 36 and 37) have
evolved a criterion for maximum allowable integration step size when per-
forming numerical integration in the supersonic regime. This is particul-
arly interesting because they have shown that results there can be expected
to be as good as a characteristic solution. Traugott (Ref. 18) has also
commented on this. Archer (Refs. 20 and 21) has compared experiment
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and the one-strip Belotserkovskii solution in the supersonic regime on an
elliptic nose and found favourable agreement at Mach number 7.

Belotserkovskii’s method has been used for solutions to three-dimen-
sional flows (Refs. 8 and 9). Circular cones at incidence and elliptic cones
were solved first. Chushkin and Shchennikov (Ref. 34) obtained results
for angles of incidence less than 10°. Melnik (Ref. 35), by contrast, did
not assume constant entropy on the cone surface. Both results are one-
strip solutions and are close at zero incidence. Belotserkovskii reports
a solution for an ellipsoid of revolution at 5° incidence (Ref. 9).

Several authors have extended the integral method to include real gas
effects for the flow about circular, elliptic, spherical and ellipsoidal noses
(Refs. 9, 38, 39, 40, 41, 42, 43 and 44). These differ in whether or not
equilibrium (Refs. 9, 40, 41, 42 and 43) or non-equilibrium (Refs. 9, 38,
39 and 44) effects are treated and in the way dependent variables are defined.
Of importance is the finding of Xerikos and Anderson in Ref. 42 and
used in Ref. 43 that entropy changes must be included in a formulation of
the continuity equation for real gas flow.

All workers other than in the U.S.S.R. group have worked in one-strip.
The work of Yalamanchili (Ref. 38), Hermann and Thoenes (Ref. 39)
is a noteworthy and successful approach to describe both equilibrium and
non-equilibrium effects by a simplified but rational air model. They
consider only two components—nitrogen and oxygen—and allow only
for oxygen dissociation. The only empirical data required is the oxygen
dissociation rate constant. Belotserkovskii (Ref. 9) reports equilibrium
solutions using an empirical but accurate fit to the data for air dissociation.
He uses an oxygen dissociation model for non-equilibrium solutions. He
also gives a solution for an air model of oxygen and nitrogen although the
first to do this were evidently Shih ‘et al (Ref, 44). Springfield (Ref. 45)
has extended their work to include vibrational as well as chemical relaxa-
tion?on arbitrary body shapes.

In this paper a report of a study to examine the validity jof the first-
order perfect gas solution is presented. A computer program of the solu-
tion is mow available for axisymmetric and cylindrical bodies of arbitrary
shape at zero incidence and at any free-stream Mach number. Program
printout presents shock wave, body surface and shock layer data.

2.—EQUATIONS

The steady flow equations expressing conservation of mass, momentum
and energy for a perfect, inviscid gas respectively are

—
N =0 N s e e e 2.1)
2] —- —-
VTﬁF*V = e e (2.2)
P
Bl e e s MR s e LS s 2.3)
P
y—1
where x = 2

Velocity, pressure and density have been non-dimensionalised through
use of the maximum free-stream velocity and the free-stream stagnation
pressure and density.

Re-arranging the equations gives

V(ln:—y) ::M_>

and therefore

ie., = is a function of vorticity and is constant along a streamline.
P

In the (s,7) co-ordinate system (Fig. 2) for symmetric plane (j = 0)
or axisymmetric flow (7 = 1), Egs. (2.1) and (2.2) become non-linear, first-
order partial differential equations. These may be put into * divergence >
form and transformed into ordinary differential-integral equations by inte-
grating with respect to 7.

Using Leibnitz’s rule, there results the integral flow equations:

Continuity :

d _ b o B
Efl -+ (11 B)g (1 + F) — (' g); T Of -ty (2.6)

N=-1OoOMentum ;
d _ 5 ds
L+ (7 H), ( 1 E) — G = Py =T e 2.7
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From geometry of the shock:

s 5
== (1 +—-R—)cot(9+x) .................. 2.8)
where— 5
1~ [ (igndn
0
a5
e f 4 P, dn
0
&
e f G e S 2.9)
0

the new dependent variables g, h, G, H and P are mass and momentum
fluxes and are defined as:

g = 7Y h = 79,5 P=puv,v,

i
G=-;?(v.p+pvaz)+j(l+%) % p cos 0; H= »xp+pvt

where == (1 — V®)1/-1) and represents density along a streamline.
This is interchangeable with p in the continuity Eq. (2.1) through use of
Eq. (2.5).

The integral I, represents the mass flow across any section and I, , I
the #, s direction momentum flow rates respectively. The s momentum
equation vanishes on the stagnation streamline and hence is redundant.

To solve the integral equations it is necessary to assume some form
for the three integrands, consistent with physical reasoning and the known
boundary values. A linear approximation leads to the first-order equations.

3.—FIRST-ORDER APPROXIMATION

The first-order equations are obtained by approximating the inte-
grands in the integral flow equations by linear functions, i.e.:

RGO (CHIE CRN [—" G.1)
iR — g () R =) R e (3.2)
G =G, +%(Ga e g G (3.3)

3 )

Any integral I = .[ fdn, Eq. (2.9), then becomes I = 3 (fo + fi) and the
0

integral equations reduce to the following three coupled, first-order, linear

differential equations in 8, x, v, and which can be integrated by standard
numerical methods:
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dyx
Bog = S (3.9)
— T s
50
dy M,
S o B R 3.5
ds M, ©.3)
5
e (I—i—i)cot(ﬂ-l—x) ............... (3.6)
ds R

The coefficients C and M are defined (Ref. 23) first in terms of g, #, G, H
and P and then in terms of boundary values of v, and v, 8, x 0, Ms
and y.

3.1 Integration Procedure : i
At the start of integration 8,, the stagnation point shock standoff
distance, is unknown.
When v,, = ¢,* the local speed of sound, the denominator of dvy, [ds
in Eq. (3.4) becomes identically zero.

Belotserkovskii
3 strip (Ref 3)
-——- One :Strip
f -0:020 0:020 ‘¢
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0:25 =50-010 0:010
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1 1 ! 0 1 | i 0
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Fig. 4—Variation of G (= kp + pv,?) across Shock Layer for a Circular
Cylinder at M, = 5 (S* = 0.8).
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Fig. 5.—Variation of P(= pv, va) across Shock Layer for a Cireular Gylinder
at M, = 5 (S* &~ 0.8).
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TABLE Ia
SPHERE MACH NO = 3.000
DELTO = 0.2159293664 GATE = 0.95 STEP = 0.00625
SLAMDA | DELTA CHI YSO PO PNE
0.0 0.2159 0.0 0.0 0.3283 0.3283

0.0625 0.2165 0.0477 0.0346 0.3270 0.3271
0.1250 0.2182 0.0952 0.0692 0.3229 0.3232
0.1875 0.2210 0.1422 0.1038 0.316l 0.3169
0.2500 0.2251 0.1887 0.1382 0.3069 0.3082
0.3125 0.2305 0.2344 0.1723 0.2955 0.2973
0.3750 0.2372 0.2790 0.2063 0.2820 0.2843
0.4375 0.2454 0.3225 0.2399 0.2668 0.2694
0.5000 0.2552 0.3646 0.2731 0.2503 0.2529
0.5625 0.2668 0.4053 0.3058 0.2328 0.2350
0.6250 0.2804 0.4443 0.3380 0.2148 0.2159

0.6875 0.2961 0.4816 0.3694 0.1965 0.1961
0.7500 0.3143 0.5172 0.4000 0.1784 0.1758
0.8125 0.3352 0.5511 0.4297 0.1607 0.1553
0.8750 0.3591 0.5834 0.4583 0.1439 0.1349
0.9375 0.3863 0.6141 0.4858 0.1280 0.1150

1.0000 0.4173 0.6435 0.5120 0.1133 0.0959
1.0625 0.4524 0.6718 0.5368 0.0999 0.0778
1.1250 0.4922 0.6991 0.5602 0.0879 0.0610
1.1875 0.5373 0.7257 0.5821 0.0771 0.0459
1.2500 0.5881 0.7517 0.6026 0.0677 0.0326
1.3125 0.6455 0.7772 0.6215 0.0595 0.0214

1.3750 0.7104 0.8023 0.6391 0.0523 0.0124
1.4375 0.7838 0.8269 0.6553 0.0461 0.0058
1.5000 0.8669 0.8511 0.6703 0.0407 0.0016

1.5625 0.9613 0.8748 0.6842 0.0360 0.0000

Hence we have a two-point boundary value problem in which the correct
initial guess of §, is determined by the simultaneous vanishing of the
numerator and denominator of duv,, /ds at the sonic point. The sonic
singularity is floating in that its position is unknown at the start of integra-
tion. This leads to a computational procedure of a non-routine nature.
The illuminating study by Xerikos and Anderson (Ref. 27) presents a
complete treatment of this problem. Integration will then yield shock
and surface variables such as shock shape and surface pressure distribution.

One virtue of the method of integral relations is that the integration
may be continued over as much of the body as desired regardless of the
changing nature of the differential equations between the subsonic and super-
sonic flow regimes. However, if desired, a switch to a characteristics solu-
tion may be made at the sonic line for the integration into the supersonic
region.

For the axisymimetric case (j = 1), the equations are singular at the
start of integration on the stagnation streamline. Application of L Hospi-
tal’s Rule gives appropriate starting values (Ref. 23).

3.2 Inverse Procedure:

The solution of the integral equations yields boundary values only.
To obtain information about the flow field an inverse procedure is necessary.
For this purpose Xerikos and Anderson (Refs. 27 and 42) developed the
¢ gradient > method. An alternative method is proposed here.

Expressions may be derived for the normal derivatives of the variables
(P, p» s , ©,) at the shock and body through use of the equations of vorticity
and continuity. This allows a cubic equation in 72 /8 to be fitted to the values
on the boundaries and the subsequent evaluation of the flow field. The
details are given in Ref. 23.

4—RESULTS AND DISCUSSIONS

4.1 The Linear Assumption :

Because the first-order equations are obtained by representing the
functions g, G and P as linear across the shock layer, three integral trunca-
tion errors are introduced into the flow equations. Consequently, the
difference between the first-order and the exact solutions will depend on
the extent to which this approximation is justified, particularly in the sub-
sonic zone.

Any integral becomes:
R e
= o T

The validity of this linear approximation may be examined  a poster-
iori ” from the results of the first-order solution which, if the integral trun-
cation terms are of second-order, should not differ greatly from the exact
solution.
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TABLE Ib
FLOW FIELD MACH NO = 3.000
N/DELTA
SLAMDA

0.0 25 .50 75 1.0
0.0 Vs | 00 0.0000 | 0.0000 | 0.0000 |  0.0000
VN | 00 —0.0564 | —0.1079 | —0.1574 | —0.2079
P 0.3283 03252 | 03160 | 03012 | 0.2813
RHO| 0.3283 03261 | 03195 | 03087 | 0.2940
0.1250 0.0692 0.0711 | 00739 | 00777 | 0.0824
0.0 —0.0560 | —0.1068 | —0.1556 | —0.2052
0.3229 0.3203 | 03118 | 02978 | 0.2787
0.3244 03229 | 03170 | 03070 | 0.2931
0.2500 0.1382 0.1415 |  0.1467 | 0.1538 | 0.1628
0.0 —0.0545 | —0.1035 | —0.1501 | —0.1972
0.3069 03063 | 02999 | 0288 | 02713
0.3129 03134 | 03097 | 03019 | 0.2902
0.3750 0.2063 02101 | 02170 | 02268 | 0.2395
0.0 —0.0519 | —0.0976 | —0.1405 | —0.1836
0.2820 02844 | 02813 | 02730 | 0.259%
0.2945 | 02983 | 02981 | 02939 | 0.2856
0.5000 02731 |, 02762 | 02837 | 02954 | 03109
, 0.0 —0.0476 | —0.0885 | —0.1261 | —0.1639
0.2503 | | 0.2568 | 0.2580 | 0.254 | 0.2450
0.2705 02786 | 02829 | 02832 | 0.2795
0.6250 0.3380 0.3387 | 0.3457 | 0.3582 | 0.3755
0.0 —0.0410 | —0.0753 | —0.1063 | —0.1376
0.2148 02259 | 02321 | 02330 | 02285
0.2425 02556 | 02652 | 02708 | 0.2720
0.7500 0.4000 03964 | 04017 | 04143 | 0.4323
0.0 —0,0315 | —0.0571 | —0.0804 | —0.1047
0.1784 0.1946 | ' 02058 | 02115 | 02114
02123 02312 | 02464 | 02574 | 0.2636
0.8750 0.4583 0.4482 | 04508 | 0.4627 | 0.4806
0.0 —0.0184 | —0.0333 | —0.0479 | —0.0650
0.1439 0.1652 | 0.1810 | 0.1909 | 0.1946
0.182l 02070 | 02277 | 02437 | 0.2544
1.0000 0.5120 0.4931 | 04921 | 05032 | 0.5205
0.0 —0.0012 | —0.0036 | —0.0090 | —0.0193
0.1133 0.1393 | 0.1586 | 0.1716 | 0.1784
0.1536 0.1844 | 02100 | 02301 | 0.2448
1.1250 0.5602 0.5302 | 05253 | 05358 | 0.5522
0.0 0.0201 | 00316 | 00353 | 00317
0.0879 0.1178 | 0.1392 | 0.1538 | 0.1629
0.1280 0.1647 | 0.1939 | 02168 | 0.2348
1.2500 0.6026 0.5589 | 0.5501 | 0.5609 | 0.5762
0.0 0.0453 | 0.07I18 | 0.084] | 0.0867
0.0677 0.1007 | 0.1227 | 0.1373 | 0.1480
0.1063 0.1485 | 0.1797 | 02036 | 0.224]
13750 0.6391 0.5789 | 0.5665 | 05788 | 0.5927
0.0 0.0750 | 0.1170 | 0.1367 | 0.1446
0.0523 0.0878 | 0.1089 | 0.1220 | 0.1336
0.0884 0.1361 | 0.1677 | 0.1907 | 02127
1.5000 0.6703 0.5897 | 0.5739 | 0.5892 | 0.6017
0.0 0.1109 | 0.1688 | 0.1933 | 0.2044
0.0407 0.0785 | 0.0977 | 0.l08] | 0.1197
0.0739 0.1275 | 0.1583 | 0.1786 | 0.2007

Using the results of Section 3.2 on Inverse Procedure, expressions
may be developed for the normal derivatives of g, G, P and the cubic
fit will then give the n-direction variation as before. The details are given
in Ref. 23. The results are examined in Figs. 3, 4 and 5 for the particular
case of the circular cylinder at M» = 5. These show a comparison between
the exact values of Belotserkovskii (Ref. 4) and those obtained from the first-
order solution of the variation of g, G and P across the shock layer. At
any value of s, a straight line joining the ordinates of the one-strip boundary
values would represent the initial linear approximation.

The agreement between exact and first-order values of g, G and P
is seen to be quite close over a wide range of s, especially for the function P
which represents the normal momentum flux.

Although agreement progressively deteriorates as s increases, the first-
order approximation is well justified. Furthermore, it can be expected
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Sphere Mo = 2.996.

Sphere M. = 2.996.

that the approximation will improve away from the stagnation point with
increasing Mach number.

4.2 Results for a Sphere:

The convergence test calls for 10 decimal places on the value of stag-
nation shock standoff distance. See DELTO in Table Ia. Once this
test is passed, integration is allowed to proceed into the supersonic region
over the whole quadrant of the sphere. As an example, the flow solution
over the whole face of a hemisphere at Mach number 3 is presented in
Tables Ia and Ib. The first-order solution for shock shape (8, x), surface
velocity (v,,) and surface pressure (p,) are presented in Table Ia, together
with a column of the pressure predicted by the Newtonian theory (pNE).
The independent variable A represents the circular angle measure appro-
priate to the arc length s on the surface of the sphere. The shock layer
flow field data are presented next in Table Ib. The calculation used the
new inverse procedure described earlier (Section 3.2 on Inverse Procedure).
The chosen intervals on A and # /8 make possible direct comparison with the
tabulated results of Belotserkovskii (Ref. 4), if desired.

Taking the measurements of Xerikos and Anderson (Ref. 42) of the
flow around a sphere as a basis for comparison, Figs. 6, 7, 8 and 9 illustrate
the accuracy of the first-order solution and its corresponding shock layer
flow field at Mach number 3. The numerical results of Xerikos and
Anderson (Ref. 42) are the same as those obrained here.

4.3 Results for a Power-Law Body :

To demonstrate the application of the method to arbitrary body shape
and also to evaluate the effect of increasing M, Horning’s study (Ref. 11)
of a power-law cylinder at Mz = 8.3 using blast wave theory and tested
in a gun-tunnel is chosen for comparison. The one-strip solution of the
method ©f integral relations is run (Ref. 22) far into the supersonic region.
Shock shape and surface pressure are shown in Figs. 10 and 11. It should
be noted that the sonic line occurs at a body slope of about 50° (Fig. 10),
and close to surface pressure coefficient of 1 (Fig. 11).
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The first-order method of integral relations is seen to give good agree-
ment with experiment, especially near the nose, although the blast wave
theory is clearly superior far from the nose. Both theories are significantly
better than Newtonian far downstream.

The Institution of Engineers, Australia




DIRECT SUPERSONIC BLUNT BODY PROBLEM—Ware & Archer.

CONCLUSIONS

Examination of the flow field by a new method has shown that the first-
order solution using the method of integral relations for the flow of a perfect
inviscid gas around a supersonic blunt body of arbitrary shape represents
a very good approximation to the physical processes involved especially
in the nose region. The accuracy of the method improves throughout the
whole flow field with increasing Mach number.

As examples of typical first approximation solutions, tables for the
flow over the whole nose of a hemisphere at Mach number 3 and results for
the shock shape and surface pressure distribution for a power-law body
at Mach number 8.3 are presented.
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