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Toward the Calculation and Minimization of Stokes Drag on Bodies of Arbitrary Shape
By E. O. Tuck, Pu.D. *

Swmmary.—It would be very useful to be able to solve for slow
(““ Stokes **) flow of a viscous fluid past finite bodies of arbitrary shape.
Somewhat less generally, we confine attention here to axially symmetric
flows past bodies of revolution with arbitrary meridional sections. This
problem can be reduced to solution of a pair of coupled integral equations.
Although direct numerical approximation of these equations is suggested
for the general case, only elongated bodies are treated here. For such
slender bodies it is possible to solve analytically an approximate inverse
problem and to construct families of non-trivial bodies with known drag.
Some optimization problems are investigated with a view to eventual
determination of the body with least drag for a given volume.

1.—INTRODUCTION

At a sufficiently low Reynolds number, steady flow of a viscous in-
compressible fluid is described by Stokes’ equations (see, e.g., Ref. 1)

1
0=—-Vp+vViu
P

and the equation of continuity
V.u=0

It may be recalled that “ low Reynolds number *’ means physically that one
or more of the following is true: (i) slow flow, (ii) small length scales,
(iii) very viscous fluid. These conditions are satisfied in a great many
important applications in engineering, a discussion of some of which is
given in Ref. 1.

The flows in which we are interested satisfy Eqgs. (1.1) and (1.2) and
are uniform at infinity ; i.e., where i is a unit vector in the x direction and
U the velocity of the free stream, then

U= Uias Va2 + 92+ 28200 covvvveiereinniins (1.3)
The velocity u must satisfy the no-slip condition
L e (1.4)

on the fixed closed surface § of a finite three-dimensional body (we exclude
e.g. two-dimensional flows past cylinders, to avoid Stokes’ paradox).
Associated with every such finite body surface S there is a unique flow u,
pressure p, and vorticity @ = V X u satisfying Egs. (1.1) to (1.4). From
this flow we can calculate in each case the vector force on the body (see
Ref. 2)

F:J- St pw % dS
S

and in particular the drag
D=i.F

The drag D is thus a unique property of the geometry S, and it would be
of great interest in theory and applications, to be able to calculate the
manner in which D varies with S.

Unfortunately exact solutions of Stokes’ equations are not numerous,
even if more numerous than solutions of the full Navier-Stokes’ equations
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at finite Reynolds number. Stokes’ solution for the sphere is a good starting
point, and his famous drag fomula

D = 67 palU
has been used in countless applications, most notably perhaps in the Milli-
kan oil-drop experiment. Solutions for a number of other geometries
are quoted by Lamb (Ref. 3) and repeated with a few additions in Ref. 1.
The most important of these for our purposes is that for ellipsoids, first
obtained by Oberbeck (Ref. 4). More modern and elegant treatments
have since appeared (e.g., Ref. 5) for the special case of ellipsoids of revolu-
tion (spheroids) ; the drag formula for prolate spheroids can be written

D - 87 nUI
" (1 + ¢®arccoth £ — ¢

where IZ, [ A/{* — 1 are the semi-axes of the meridional ellipse.

2.—THE GENERAL AXISYMMETRIC PROBLEM

If we confine attention to bodies of revolution in axisymmetric flow,
the problem can be stated in terms of a stream function y(x, r) satisfying

TOY S O e e (2.1)
where
D2 d 12 a2 @2)
= ——— i :
arr or ox?
The axial and radial velocity components are respectively
184 19y
=—— = e e 23
3 ror’ r ox )
On the body
P ()T Uy e il L e i S (2.4)
the boundary conditions are
= O e it L S L S (2.5)
or
9 o
= e ) S s e 2.6
4 O ax @9
while the flow at infinity is
y — $Ur? as N R ey o o 2.7)

The boundary-value problem formulated above could be solved
numerically in a number of ways. The method of finite differences (i.e.,
direct replacement of the differential Eq. (2.1) by a difference equation)
is becoming more and more popular as computer sizes and speeds increase
(see, e.g., Ref. 6) and could no doubt be used here. However, such methods
are still relatively expensive in time and space on the computer, especially
for problems such as the above where the mesh of points must extend to
an effective infinity.

Linear boundary value problems such as the present one can be
reduced to integral equations by use of appropriate singular solutions of
the equation of motion, and, providing such singular solutions can be found
and computed readily, this can lead to a more satisfactory numerical com-
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putation. The reduction to integral equations can be carried out formally
by writing down the appropriate Green’s theorem for the differential opera-
tor in a manner similar to that of Oseen (Ref. 7; see also Ref. 1, p. 79, and
Ref. 2); however, more physical developments are possible.

By analogy with the corresponding problems for Laplace’s equation,
one might hope to represent the flow due to the body S by suitable distribu-
tions of singularities over S itself, or over some surface lying entirely within
S. Again by analogy, we expect that if S itself were used there would exist
a unique singularity strength for any S which generates the flow ; if we use
a surface lying within S there might not, for sufficiently pathological S,
exist a solution to the resulting integral equation. For bodies of revolu-
tion it is particularly convenient to use distributions of singularities on the
axis of revolution itself, writing (as in Ref. 8)

(xff)alcadf_%f _ a(dE
L& — D+ T LG — ot

Eq. (2.8) represents the flow as the sum of the free stream $Ur? a
distribution of sources of strength proportional to a’; (x), and of * Stokes-
lets >’ * of strength proportional to a, (x), over a segment (— , /) of the axis
r = 0 lying entirely within S. Use of the boundary conditions on the body
in the form (2.6) leads to the following pair of coupled integral equations
to determine the unknowns a’; (x), a, (x)

(x — Hay(Hdé

0= 1Ur* (x) + i_[‘_: [(x — &)* + ro® ()] B

b=1ur 3 @8)

as (£)d¢
e dniCS) B R b D o 2.9
ire* (%) J = [ =9 ()] Sy

(= Hah(Hde
e 1
Yo le—o rre e

- J a4 (§) [(x = £+ *’02("3]&5 ......... (2.10)

o e — 92+t (®)]22

It must be remarked that we do not know a prieri whether the above
integral equations possess a solution (a’; (x), a. (x)) for any given r, (x).
This depends upon whether or not we can continue analytically the exact
solution (which certainly exists and is unique) for external flow past the
body r = r, (x) inside the body, all the way to the axis » = 0 without en-
countering singularities. We do not propose to study such existence
questions here, but rather view the problem in a semi-inverse manner.
Certainly if there does exist a solution of the system (2.9), (2.10), it must
generate through the representation (2.8), an exact and unique solution for
Stokes flow past the body » = r, (x).

In spite of the above warning, it would appear to be a worthwhile
endeavour to solve Egs. (2.9), (2.10) numerically, replacing the integrals
by suitable quadratures and inverting a kernel matrix, as done in Ref. 2
for a time-dependent two-dimensional problem; work is proceeding on
this approach. Of course a safer direct method would be to use distribu-
tions of singularities over the surface S of the body r = r, (x) itself, rather
than on the axis r = 0, for then we should expect (although no proof is
known to this writer) that a unique solution of the resulting integral equation
would exist for any r, (x).

General inverse methods, in which a’; (x), a. (x) are given and r, (x)
is unknown, are distinctly unpromising. For not only is the system
(2.9), (2.10) non-linear when r, (x) is treated as the unknown, but more
basically we must solve two equations with only one unknown. Clearly
we cannot prescribe a’; (x) and a, (x) independently of each other, and
would have to leave one of them, with r, (x), as an unknown. However,
in an approximate version of the equations for a slender body, discussed
in the following section, a’; (x) drops out and we are able to solve directly
for r, (x) in terms of a, (x).

Finally we should remark that there is no need to go through the steps
indicated by Egs. (1.5), (1.6) in order to calculate the drag. We need merely
make use of a formula of Payne and Pell (Ref. 5)

m VAtr

r—rco r

D = 4m p @Urt — )

giving the drag in terms of the behaviour of the stream function at infinity
to show that
1
D=trp| a(od
Jp

Thus once we have solved for the Stokeslet distribution a, (x), the drag is
obtained by simple quadrature. It is often convenient to think of a

*The concept of a *“ Stokeslet ** was first introduced by Hancock (see Ref. 10, p. 152) ;
it plays a role in Stokes’ flow very similar to the role of sources and sinks in potential flow.
An isolated * Stokeslet > has a stream function proportional to r2/(x2 + r2)4, a solution of
Eq. (2.1) having non-zero vorticity.
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“unit > Stokeslet as having unit drag. Egq. (2.11) then simply indicates
that the total drag is proportional to the total Stokeslet strength.

3.—THE SLENDER-BODY APPROXIMATION

We now consider the simplifications of the representation (2.8) and
integral equations (2.9), (2.10) which result from the assumption that the
body r = ry (x) is slender, that is, that 7, (x) /! is small. The analytical
apparatus required for making this approximation was developed and dis-
cussed in Ref. 8, where it was shown that Eq. (2.8) reduces to

= 2Ur* + a1 (x) + [a2 () — da," ()% log v +
+ [Be (x) — 38," (%) + da," (X)]r* +

1 Olasrilloz ) e ! (3.1)
when r is small, where
7 .
bua () = — @y, @ logla@ — w1 3 [ 2@ 0alB,,
—1 [x— ¢
......... (3.2)

We can proceed either by similarly approximating Egs. (2.9), (2.10), or
by applying the boundary conditions directly to Eq. (3.1); with the result
that

a; = O(r*), @y = O[(log ry)~']

2a, (x) logry (%) + as(x) + 26 (x) - U =0 ...........3.4)

and

Notice that @, does not appear in Eq. (3.4) and is nearly two orders of
magnitude smaller than @, . That is, for slender bodies the source distribu-
tion a’; (x) is of negligible importance relative to the Stokeslet distribution
a, (x), and the latter may to a good approximation be chosen independently
of the former in an inverse method. In Ref. 8 it was pointed out that
Eq. (3.4) is a difficult singular integral equation, as a consequence of the
representation (3.2) for b, (x) in terms of a; (x), and an alternative develop-
ment in terms of Legendre polynomials was sought. This development,
which is entirely equivalent to expanding a, (x) in a Fourier-I.egendre series,
leads to an infinite set of equations in an infinite number of unknowns.
Unfortunately, attempts at direct inversion of a truncated set of these
equations led to so-far-unexplained difficulties, and this direct approach
has been temporarily abandoned.

However, Eq. (3.4) lends itself admirably to an inverse approach,
for we can solve analytically for r, (x), obtaining

a, + 2b, + U)
2a,

o (x) = exp(—

Now, given any a, (x) we find b, (x) by evaluating the integral transform

Eq. (3.2) and substitute in Eq. (3.5) to give the corresponding body shape.

Furthermore, we know the drag of such bodies by use of Eq. (2.11) and if

we can construct a family of bodies by varying the Stokeslet distribution
ol

a, (x) but not the total Stokeslet strength a, (x) dx we shall have a

family with different geometric shape but constant drag.
It is convenient at this point to non-dimensionalize, writing
a, (x) = UA(Ix*)

7o () = IR(Ix*)

but immediately dropping the star on x*. Then Eq. (3.5) becomes

Rx) =21 —»° exp(— f@_izj‘%éﬂi) ...... (3.7)
where
SapiE (3.8)

doy Jx— ¢

Eg. (3.8) defines an “ S-transform ” (S for “slender ”) which is
an integral transform of any given function A(x). Recall (Ref. 8) the follow-
ing property of the §-transform

o 1
SR =2(1 455+ +5) P

where P, (x) is a Legendre polynomial.

For example, if A(x) = A, = constant, then :SA(x) = 0 and Eq. (3.7
gives
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It 1+ 4
Rix) =2 N4 f:xp(_ s D) ............ (3.10)
24,
That is, this body is a spheroid with thickness [length ratio
1+ 4,
=2 = =l - srreeeee e 3.11
£ exp 2, ) ( )
Solving for A, , we have
—1
Ay=—71—
: 1 4 2log i¢
with a drag of
D = 8 T LA e s T e (3.12)
— 8r p Ul
e e PP PP 3.13
1 4 2log %¢ ( )

‘This result can also be obtained from the exact drag Eq. (1.8) of a spheroid
by making the assumption that & = 4/¢® — 1/{ is small; the extent of
its validity is illustrated in Fig. 1.
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Fig. 1.—Drag of Spheroids of Varying Thickness Ratio, Scaled with Respect
to the Drag of a Sphere with the Same Volume.

More generally, if
Aw) = D Ay Py ()

the drag is still given by Eq. (3.12), so that for fixed 4, and fixed length 2/
all bodies generated by this A(x) have the same drag as a spheroid of thick-
ness [length ratio ¢ given by Eq. (3.11). The shape of such a family of
bodies is given by

@
D GE @
n=0
Rx) =2\ T = aslexpll =W = g E ol (3.15)
w
D P
n=0
where
1
(6} — (L
2
1 1 1 1
Ch=l-+14+=+=+...+~- o = T o el D
(2+ totst +n)_4, n=1,2 (3.16)
As a non-trivial example of such bodies consider the case
A=A, =A,=A;,=...=0
which defines the family
1+ 4 3 1
e
R(x) =2v1 — x®exp| — 5 : (31T
A Zat— =
satlet (2:” 2

For a finite body we must require that the denominator of the exponent
be non-negative for |x| < 1, which requires

— Ay < 4;< 24,

The body with 4, = — A, is cusped at its ends, while the body with
Ay = 24, has zero thickness at its middle section. .
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Fig. 2.—A Family of Bodies of Revolution, All with the Same Stokes Drag.

Fig. 2 gives a family of shapes calculated from Eq. (3.17) at 4, = 0.2
(e = 0.10), for several values of 4,. For a fixed half-length I, each of
these bodies of revolution has the same drag 1.67 p Ul, even though their
geometric shape and size varies dramatically. The volume decreases as
A, increases in this family. The cusped body (4, = — 0.2) has 409,
more volume than the spheroid (4, = 0), while the extreme dog-bone shape
(A, = 0.4) has 439, less. Even though this particular family is presented
as the simplest example only, it already includes shapes which could occur
in chemical engineering or biological applications. Families with more
than one parameter yield even more interesting shapes.

4,—MINIMIZATION OF DRAG

That Stokes’ drag can be reduced by varying body geometry is evident
from Fig. 1. Clearly at constant volume there exists a non-trivial member
of the family of spheroids with least drag. This occurs at &€ = 0.52 and
gives a body with 59 less drag than the sphere of the same volume. While
this can hardly be described as a large decrease, it is not insignificant and
leaves open the possibility that, by allowing more freedom than just the
spheroid class of geometry, we might achieve even greater reduction. It
may be worth expressing this result in an alternative (perhaps more im-
pressive |) form by observing that, for a given drag penalty, we can trans-
port 159, more volume using a spheroid of thickness ratio 1 in 2 than by
using a sphere. Nevertheless, the shallowness of the minimum is rather
discouraging, and suggests that numerical methods for seeking the mini-
mum might converge only slowly, if at all.

The mathematical problem of finding the optimum geometry under
the slender-body approximation is quite easy to formulate as a problem in
the calculus of variations (see, e.g., Ref. 9). The drag D is given by

¢ 4
D= gy sz A() dx
=
and the volume is
1
Ve w[“f R® (x) dx
=1

We have to minimize D subject to constancy of I/, with R(x) and A(x)
related by Eq. (3.7). Suppose first of all that, in addition, the length 2]
of the body is a constant. Then, using Lagrange multiplier A (Ref. 9,
p. 165), the condition that both D and ¥ are stationary is

a(fi R®(x) dx — AfiA(x} dx) —0

So long as / is fixed, Eq. (4.3) holds for arbitrary A, where the dimensionless
constant A is ultimately determined by the given value of V /I3

On the other hand, if we do not insist that ! be fixed, we first eliminate [
by minimizing D /V*/®. The resulting variational problem is still speci-
fied by Eq. (4.3), but now A is prescribed as

A:Bfi chx)dx/fi Al) dx

At this point we should note an indication of possible trouble ahead. For
if there exists a solution (an * absolute > minimum) when we do not fix
then this will correspond to some particular value of the dimensionless
parameter V/[I°. Suppose now we try to solve the problem with a smaller
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value of this parameter. It is physically plausible that the new solution is
obtained by attaching to the ends of the * absolute” minimum body,
spikes of zero thickness (hence presumably zero drag) and of length just
sufficient to achieve the prescribed ¥V [I*. We should therefore expect
(though nothing like a mathematical proof has yet been constructed) that
unless A is prescribed by Eq. (4.4), some kind of discontinuous solution
(if any) would appear. To make matters worse, it must be observed that
we have no reason to expect the absolute minimum to be a slender body ;
indeed the optimum spheroid is not very slender.

In spite of the above warnings let us proceed to consider the variational
problem with a general . Now from Eq. (3.7) we can express 3R® in
terms of 84, in the form

SA4+1
2 A b =g e
3R RB( - )

:%Z—a + 84y 54 —gicSBA ............ (4.5)
Substituting into Eq. (4.3) we have
fl SA(x)I:%i Al S A] = J'l %2—5314 dx
S R:
2 J_1 sA(%) S I:?] T )

using the easily-proved property of the S -transform
r1l nl
J F &G dx = J G SF dx
-1 -1

which holds for any functions F(x), G(x). Finally, from the fundamental
lemma of the calculus of variations (Ref. 9, p. 185), since the variation
dA(x) is quite arbitrary, we must have

R (1+5A)_A:-—S({§)

AS
The above result can be expressed in a remarkably simple form by
defining a new function B(x) via the equation

R2 () = AAQG) BIAX):  avviesseonteosiiinines (4.8)
whereupon we have from Eq. (4.7)
B
= LS —1— 5B
or
AISB = BSA— Bt i b (4.9)

Even more remarkable is the result of using Eq. (3.7) to eliminate §A4
from this equation, with the result

MAB
1+ B+ SB e SR | e R 4.1
+B+§ +Blog[4(1_x2):| .10)
which is to be compared with
1+A4+S8A4+ Alog —’\—ALE—] )i by (4.11)
41 — x2)

obtained by re-arrangement of Eq. (3.7) itself.

One obvious consequence of the symmetry of the pair of coupled non-
linear integral equations (4.10) and (4.11) is that 4 and B are interchangeable.
Thus if there exists a solution with Stokeslet strength 4(x) and geometric
shape defined through Eq. (4.8) by a certain function B(x) # A(x), then
there must exist another solution with a different Stokeslet strength B(x)
but the same shape. Unless we are prepared to admit the possibility
that there is no unique Stokeslet strength for a given body shape, we must
therefore conclude that any solution of the system (4.10)-(4.11) which
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exists will have A = B, in which case the common function A(x) satisfies
the single non-linear integral equation

I\AE

Note that the above is by no means a proof that A = B, for it rests on the
unproved assertion that the singularity distribution on the axis which
generates a given body is unique. Perhaps all we should say is that we
choose to seek such a restricted solution because it is intuitively more satis-
factory. Clearly there are a number of quite deep mathematical questions
left unanswered.

Efforts are being made to solve Eq. (4.12) numerically. This is quite
a difficult task because of the logarithmic non-linearity, and no meaningful
results have yet been obtained. It is possible that the difficulties mentioned
after Eq. (4.3) are the root cause of the present lack of success for general
(fixed) A, in which case we should perhaps be allowing A to vary until we
obtain an absolute solution, satisfying Eq. (4.3). It may be that Eq. (4.12)
defines a kind of eigenvalue problem, such that a (smooth) solution exists
only for a particular value of A.

5.—CONCLUSION

The principal new result of this paper is an inverse procedure, outlined
in Section 3, for constructing families of slender bodies of revolution with
known Stokes drag. The shapes illustrated in Fig. 2 are calculated from a
very simple one-parameter example of such a family, but nevertheless in-
clude some quite interesting and non-trivial forms which could appear in
engineering or biological applications.

Even though this method is apparently an inverse one, it is possible
to use families with an unlimited number of free parameters; this raises
the possibility that procedures could be devised to construct a body of
known drag, which differs in shape by an arbitrarily small amount from any
given body.

In addition, we have sketched procedures to be adopted for solving
numerically the problem of Stokes flow past general (not necessarily slender)
bodies of revolution, and the problem of minimizing the Stokes drag of
a slender body. The final solution to both these problems requires numerical
inversion of integral equations, and work is continuing on these very diffi-
cult computational problems.
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