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The authors are convinced that the solution to the problem of the
maintenance of open channel flow in the culvert as offered by these model
tests is conservative. They are however, concerned with their inability
to duplicate, properly, air entrainment in drop chute spillweir when air
entrainment is not the only governing factor. The use, as in this model,
of additional air added artificially is perhaps begging the question. How-
ever, at this time, a modest research project on the subject of duplicating air
entrainment in drop chute spillweir models is underway at Singapore
Polytechnic.

166 NON-DIMENSIONAL H, PROFILES—Advani & others.
BEVEL J\-r
35" Lo
= 108 AR HoLE |- geet
777AZZ7 777, 7777777777 TIA . % 7777,
e
/:T_ WHI;TTZE
Gl = w 0 THROTTLE
; it —L - A3 ] g
7 A
% IIl 4?: Z77 Z ﬂ 77777 /
iy >

Fig. 6.—Details of Divider—Curve and Throttle.
(Model Scale: 1 cm. to 1 ft.)

It may be seen from the test results that satisfactory operation of the

spillweir and culvert was achieved when—

1. A sharp-edged throttle was installed at the base of the drop chute
6.0 ft. above the bottom of the culvert.

2. The base of the drop chute was faired to a radius of 8.5 ft.

3. A 10-in, vent pipe was let into the roof of the culvert near the
throttle.

4. A horizontal divider, 35 ft. in length, was installed in the culvert
just downstream from the throttle which effectively prevented the
ﬂowlfrom filling the culvert and thus ensuring open channel flow
at all times.
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Non-Dimensional H, Profiles in Horizontal Prismatic Channels

By R. M. Apvani, M. M. DANDERAR and J. K. VIRMANI*

Summary.—A non-dimensional form of the equation for the surface
profile of H, type in horizontal prismatic channels of triangular, rectangular
and trapezoidal shapes, is developed. It is analysed with the help of a
computer for different shape factors of the channels, and the results are
presented in graphical form. It is seen that the effect of increase of side
slope z is to flatten the profile of the curve, while the effect of increase of
the depth to bed-width ratio is to make the profile steeper.

LIST OF SYMBOLS

The symbols are defined where they first appear in the paper and are
also given below in alphabetical order for convenience of reference.—

A Cross-sectional area of flow.

b Channel bed-width.

G The integration constant.

E  Specific energy of flow.

K. Conveyance at critical depth.

o

K Conveyance of the channel = S
A,

L, Brink length.

1 = J—;} Critical length for the channel.

¢

log Z

M=2 loggy Hydraulic exponent for the critical flow.
log K

N =2 ]oggy Hydraulic exponent for the normal flow.

P Wetted perimeter.
Q  Discharge.

*Paper No. 2579, presented at the Third Australasian Conference on Hydraulics and
Fluid Mechanics held in Sydney from 25th to 29th November, 1968.

i The authors are, respectively, Principal, Professor of Civil Engineering, and Lecturer
in Civil Engineering, Malaviya Regional Engineering College, Jaipur, India.
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R  Hydraulic mean depth.

&  Bed-slope of the channel.

8§, Critical slope for the channel,
S;  Friction slope.

T  Width at the water surface.
V' Mean velocity of flow.

x Length along the channel, measured positive in a direction oppo-
site to that of the flow.

X = g— Non-dimensional length factor.
L

y Depth of flow.

¥,  Critical depth.

Vi Non-dimensional depth factor.

AS
Z Section factor of the channel = , /T 5

Z,  Section factor at critical depth.

z Side slope in trapezoidal channels.
(z horizontal to 1 vertical).

INTRODUCTION

The importance of the presentation of surface profiles of flow in open
channels in a non-dimensional form has been appreciated more and more
in recent years (Refs. 1 and 2). This representation helps to bring out the
characteristic features of the surface flow profiles in a vivid manner. In
this paper, a general non-dimensional equation for the surface profiles in
horizontal channels is proposed, and its solution is presented for the tri-
angular, rectangular and trapezoidal channels with various shape factors
»/b and different side slopes z. The results for H, profiles are shown
graphically for all these channels and then compared.
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BASIC THEORY

The basic differential equation for gradually varied flow surface
profiles in horizontal prismatic channels is:

dy S
d_ == _1'—_2 ........................... (1)
X r ( Zs )
Z

In the above equation, v is the depth of flow, x is the length measured
positively in a direction opposite to that of the flow, Z, is the section factor
at the critical depth and Z is the section factor at depth y. It may be noted
that §; (= dE/dx) 1s the rate of slope of the energy line and is positive

for the assumed positive direction of x.

The following established relations for channel flow are also well
known.

QB
Sf — F ................................. (2)
o
S, TR e 3
el S IS ATt 4
Z 2oty M nT o e S e (5)
Z3 oM H veeee(6)

In Egs. (2) to (6), . and S, are the critical depth and the critical slope
respectively, O is the discharge, and M and N are the hydraulic exponents
for the critical flow and the normal flow conditions respectively, The values
of these exponents change very gradually for the rectangular and the trape-
zoidal channels. It is assumed that, for integration purposes, these values
can be taken as approximately invariant. Substituting the values from
Egs. (2) to (6) in Eq. (1), the following form of the resulting equation is
obtained (Ref. 3):

Ke\2 Ao\
& S“(‘E) . )

&

4 . \ M M

Sl )
Y. Yy

On integration, this gives

y N+1 &) N—M+1
Sﬁ ( () ) ( c )
o gt soN oy

Ve N+1 N—-—M+1
where C is the constant of integration.
Now, if a characteristic length L, for the channel is introduced so that

Ve
e e s S e S e S R 9
3 &)
then, Eq. (8) can be written in the non-dimensional form as
( y )N+1 ( y )NwM+1
x Ve Ye
— = e R e 10
Eiliz e e RN ML (10)
From definition sketch, (Fig. 1), when ¥ = y,, x = 0
M

= — N+DN—M+D Do D (1)

If x/L, = X and y/y, = ¥, then Eq. (10) takes the following non-
dimensional form:

M YN+

x YN—M+1
NEEDIN ML N T N =M

y

H, PROF|LE,

—CRITICAL DEPTH
SECTION

L. BRINK DEPTH SECTION
1
1
i

CHANNEL" BED. %

Fig. 1.—Definition Sketch.
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Eg. (12) is a two-parameter equation in X and Y for known values of
M and N, and can be solved on substituting proper values of M and N
for any given channel.

VALUES OF M AND N

For triangular, rectangular and trapezoidal channels, the following
formulae for M and N are established:

y A dT)
= 3T — ——— ] i,
M A( T dy (k3)
2y d’P)
N == 5T —2R—— |  icocerrrrenininninss L)
3/1(5 dy 45

In the above equations, T is the water surface width, P is the wetted
perimeter and R is the hydraulic mean depth. These equations are solved
for different values of shape factor y/b for rectangular and trapezoidal
channels and the result obtained is given in Table I below:

TABLE 1
Trian- Rectan- Trapezoidal channel
S |Shape| gular gular
factor |, channel channel ([ 2 =050 | 2=1.00 | 2 = 2.00

No.| /b

N M| N| M| N | M| N|M|N|M
1. 0.05 | — | — 3.20 | 3.00 | 3.35 | 3.05 | 3.35 | 3.20 | 3.40 | 3.10
2% 0.10/] — | — [3.10(3.00|3.25|3.05 | 3.35 | 3.10 |13.45 | 3.20
32 020 — | — $2.9513.00 | 3.25 | 3.10 | 3.40 | 3.20 | 3.65 | 3.40
4. 050 | — | — .2.65 | 3.00 | 3.30 | 3.25 | 3.65 | 3.50 | 4.05 | 3.80
5. 1.00 | — | — | 245 3.00|3.55 | 3.50 | 4.00 | 3.70 | 4.45 | 4.20
6. o |533(50| — | — | — | —|—| —=| = |—

In the above table, b is the bed-width and z is the side slope of trapezoi-
dal channels (z horizontal to 1 vertical). For any channel, corresponding
to a certain shape factor, the values of M and N can be read from Table I
and substituted in Eq. (12); the equation can then be solved. A series of
such equations for rectangular channels as also trapezoidal channels with
side slopes of 0.50, 1.0, 1.50 and 2.0 were programmed for a computer solu-
tion. The resulting solution is presented here in a graphical form,
Figs. 2 and 3.

CONCLUSION

(1) From Fig. 2, it is seen that as the side slope 2 increases the profile
of the curve becomes flatter and flatter. Thus for the same y/b ratio,
a rectangular channel yields a steeper profile than a trapezoidal channel,
and in trapezoidal channels the profile becomes flatter as the side slope =
increases.

Fig. 3 shows 10 curves, 4 for rectangular channels, 5 for trapezoidal
channels and one for a triangular channel. As will be seen from the figure,
the profile for the triangular channel is the flattest. The four profile curves
for rectangular channel indicate that the profile becomes steeper as /b
increases. The profiles for the trapezoidal channel are bounded on one side
by the triangular channel, and on the other side by the rectangular channel,
These curves indicate a composite effect of the triangular area and the rec-
tangular area; from the plotted curves it is seen that the effect of the tri-
angular portion is major so that, even for increasing values of y /b, the curves
tend to become flatter, the lower limit being that of a triangular channel,
i.e., for y/b — co.

(2) Fig. 2 can be used to find numerical solutions to any problem.
For this, y, and L, have to be calculated for a given value of the discharge
before the curves can be used. In a problem of calculating the length of the
profile from the brink, it may be noted that the length correction L, has
to be separately added in the computations (see Fig. 1). Further, for any
given reach of the channel, an average value of the shape factor y/b has
to be adopted for the calculations.

(3) Work towards a further generalisation of the method is in progress.
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