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Abstract

We present results from the direct numerical simulation (DNS)
of a wall attached thermal plume in a confined box. The plume
originates from a local line heat source of length, L, placed at
the bottom left corner of the box. The Reynolds number of the
wall plume, based on box height and buoyant velocity scale, is
ReH = 14530 and a parametric study is carried out for boxes of
two different aspect ratios (ratio of box width to box height) for
a particular value of L. In the simulation, the plume develops
along the vertical side wall while remaining attached to it be-
fore spreading across the top wall to form a buoyant fluid layer
and eventually moving downwards and filling the whole box.
Further, the original filling box model of Baines and Turner [1]
is modified to incorporate the wall shear stress and the results
from the DNS are compared against it. A reasonable agree-
ment is observed for the volume and momentum fluxes in the
quiescent uniform environment and also for the time-dependent
buoyancy profile calculated far away from the plume.

Introduction

Turbulent plumes inside a confined region has received con-
siderable attention because of their wide application in many
industrial and geophysical fluid flows, for example, design of
buildings (e.g. Hunt et al. [4] ), smoke propagation in rooms
(e.g. Zukoski [11] ) and in the oceans (e.g. Killworth and Turner
[5] ). A turbulent plume arising from a local source of buoy-
ancy in a confined region can lead to stratification of the fluid
surrounding the plume, which is described in detail in the fill-
ing box problem of Baines and Turner [1] hereinafter referred
to as BT. They considered a plume generated at the centre of
the bottom boundary within the initially uniform confined en-
vironment. The plume rises to the upper boundary and spread
towards the sidewalls, and form a density interface between the
plume outflow and the ambient fluid. The continuous supply of
buoyant fluid causes this density interface to move downwards
towards the source. Baines and Turner [1] developed an ana-
lytical model for the filling box problem based on the classical
plume theory presented by Morton et al. [7]. Later, Worster
and Huppert [10] extended this model and obtained an analyt-
ical expression for the time-dependent density profiles in the
filling box. The aspect ratio of the box is an important parame-
ter in the filling box studies. The effect of aspect ratio (i.e. ratio
of the radius of a circle with an area equivalent to the cross-
sectional area of the tank to the height of the tank, R/H) on
the filling box process for round plumes was investigated by
Barnett [2] both analytically and experimentally. Barnett found
that the filling box process occurs only for large aspect ratios
(R/H ≥ 1.0). For moderate aspect ratios (0.172 < R/H < 1.0),
the plume outflow in the environment is observed as horizon-
tally inhomogeneous and overturning circulation is developed
in the environment. In the case of extremely small aspect ratios
(R/H ≤ 0.172), the turbulent plume breaks down due to the in-
teraction with the side walls and the plume no longer reaches
the top of the tank.

While all the above studies focus on the plumes generated at the
centre of the confined box, investigation of plumes attached to
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Figure 1: Contour plot of the instantaneous non-
dimensionalised temperature (T ∗) at y/H = 0.5 for aspect
ratio (AR) = 1.0.

the wall, which is the focus of the present study, has received
less attention in the literature. One such study, however in an
open environment (not confined), is by Grella and Faeth [3].
They carried out a similarity analysis on wall attached turbulent
plumes originated from a line heat source with an assumption
of constant skin friction coefficient c f . However, the devel-
opment of a turbulent plume in a confined box is different and
has primarily two stages: the transient and the asymptotic stage.
In the transient stage, the plume that develops along the verti-
cal side wall (similar to the open environment), impinges on the
top wall thereby forming an interface layer and with time moves
downwards to the bottom wall (see figure 1). The region below
the interface layer is considered as a uniform environment. In
the asymptotic stage, the interface layer would have reached
the bottom wall, and the temperature at every point in the box
increases with time, and all the velocities become statistically
steady.

In this paper, we carry out direct numerical simulations (DNS)
of wall attached line plume in confined boxes, and compare the
results with a modified version of BT’s analytical model. The
present study is restricted only to the transient stage and the
results from the asymptotic stage are not discussed.

Theoretical model

We have adapted the original filling box model developed by
BT[1] to model the wall attached line plumes in a confined re-
gion by including wall effects. The schematic diagram of wall
attached plume in a confined region is shown in figure 2, where
a line heat source is located at the bottom left corner of the box.
The box height and width are H and R, respectively. The source
generates a buoyancy flux F0 per unit length and zero fluxes of



volume and momentum.

We begin by considering the volume, momentum and buoyancy
fluxes for a wall attached line plume, which can be derived from
the continuity equation, the simplified Reynolds averaged mo-
mentum equation with Boussinesq approximation in the vertical
direction (the pressure and the fluctuating terms are neglected)
and the simplified energy equation (equations 1, 2 and 3, respec-
tively). The mean velocity in the vertical direction z is denoted
by w, and in the x−direction is denoted by u.
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Here ρ is the density of the ambient fluid, g is the gravitational
acceleration, β is the coefficient of thermal expansion, T is the
mean temperature and T ∞ is the mean environmental tempera-
ture, which is far away from the plume. Also, u′, w′ and T ′ are
the fluctuating components of u, w and T , respectively. Lastly,
τx = µ∂w/∂x and τz = µ∂w/∂z are the shear stresses, where µ
is the dynamic viscosity.

Integration of equation 1 along x gives

dQ
dz

=−ue, (4)

where Q =
∫

∞

0 wdx is the volume flux and ue is the entrainment
velocity (ue = u|x=∞), which is evaluated far from the plume.
Similarly, integration of equation 2 and 3 (ignoring the contri-
bution of the fluctuating terms in the momentum and buoyancy
flux) along x gives

dM
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∫
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0
gβ(T −T ∞)dx− τ0, and (5)
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Here M =
∫

∞

0 w2 dx is the momentum flux, and τ0 = c f
1
2 w2

m is
the wall shear stress, where c f is the skin friction coefficient and
wm is the maximum vertical velocity, F =

∫
∞

0 gβ(T −T ∞)wdx
is the buoyancy flux and ∂∆∞/∂z is the environmental buoyancy
gradient, with ∆∞ = gβT ∞.

Here, the mean vertical velocity(w) and reduced gravity(gβ(T−
T ∞)) are approximated by a half-Gaussian form, i.e. w =
wm exp(−x2/b2

w), gβ(T−T ∞) = ∆exp(−x2/b2
T ), where wm(z)

is the maximum vertical velocity, ∆(z) is the centreline reduced
gravity and bw and bT are typical plume width associated with
the vertical velocity and reduced gravity, respectively. Here,
Gaussian profiles of equal width have been assumed for the ver-
tical velocity and reduced gravity fields in the plume (i.e. bw =
bT = b).

As suggested by Morton et al. [7], the rate at which fluid is
entrained into the plume is taken as proportional to the mean
maximum vertical velocity of the plume, ue = αwm, where α is
the entrainment coefficient.

Now we can express the fluxes in terms of a maximum vertical
velocity, wm(z), and reduced gravity, ∆(z), along with a plume
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Figure 2: Schematic diagram of filling box model of wall at-
tached line plume. The first front is the interface between buoy-
ant fluid and the ambient fluid. The time-dependant position of
the first front position is denoted by z0.

width, b(z), which are defined by,
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In terms of the fluxes, (4) and (5) become
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respectively.

The plume equations described above are reasonable approxi-
mations for the line plumes in unconfined environments with
c f = 0 (e.g. Lee and Emmons [6]; Paillat and Kaminski[9]). In
the case of confined plumes, two other equations are considered
for describing the environmental flow parameters. The conser-
vation of mass in the filling box can be written as

Q =−RU, (10)

where U is the downward velocity of the environment, and the
development of the buoyancy field in the environment is gov-
erned by

∂∆∞

∂t
=−U

∂∆∞

∂z
. (11)

Set-up of direct numerical simulations

In this study, we employ direct numerical simulation (DNS) to
solve the equations of mass, momentum and energy conserva-
tion within the Boussinesq approximation. The line plume orig-
inates from a line heat source of length L and initial width b0
placed along the y− direction at the bottom left corner of the
box. The confining box has width R and height H in the x− and
z−directions, respectively. Here, the gravity acts in the negative
z−direction, i.e. in the opposite direction to the rising plume.

The flux of temperature per unit area at the wall fw≡ κ |dT/dz|w
(= qw/(ρCp)), where κ is the thermal diffusivity, qw is the wall
heat output per unit area (W/m2), Cp is the specific heat at con-
stant pressure and ρ is the reference density of the fluid; the sub-
script w denotes properties at the bottom wall. For numerical
simulation we take a smooth half-Gaussian profile at the wall
over a distance of R in x− direction: fw = κA0 exp(−x2/b2

0),
where A0 is the maximum value of |dT/dz|w and b0 is the initial



ReH R/H L/H nx ny nz ∆xc/b0 ∆y/b0 ∆z/b0

14530 1 0.5 1024 256 512 0.123 0.157 0.157
14530 2 0.5 2048 256 512 0.123 0.157 0.157

Table 1: Simulation parameters of the present cases. The cell grid sizes, ∆xc, ∆y and ∆z are non-dimensionalised by initial plume width
b0. The grid spacing in x− direction, ∆xc is measured at the centre.

plume width. The buoyancy flux per unit area = gβ × (temper-
ature flux per unit area) = gβ fw. Now, buoyancy flux per unit
length (in y−direction),

F0 = gβ

∫
∞

0
fw dx =

√
πgβκA0 b0/2. (12)

The dimensionless parameters governing the present simula-
tions are Reynolds number:

ReH = F1/3
0 H/ν, (13)

where ν is the kinematic viscosity and Prandtl number, Pr =
ν/κ, which is fixed at the value for air: Pr = 0.71.

The Reynolds number considered is ReH = 14530 for boxes of
two different aspect ratios, R/H = 1 and 2 (table 1). BT[1] ob-
served that in order to avoid a large-scale circulation generated
by the plume in the confined box, the stabilising buoyancy force
in the region of plume outflow at the top of the box have to be
larger than the inertial force of the plume. The ratio between
these forces depends purely on the geometry of the box, i.e. as-
pect ratio (R/H) in this case, and not on the buoyancy flux or
any other flow properties. In their experiments, they concluded
that the critical value of the aspect ratio is about one. Therefore,
in the present case, the lowest aspect ratio (R/H) of the box is
set to one.

The bottom, top, left, and right boundaries are no-slip walls.
Periodic boundary conditions are imposed on velocities, pres-
sure and temperature in the y−direction. We set all initial ve-
locities to zero and add a random perturbation to the tempera-
ture field in the entire domain, in order to trigger a transition
to turbulence in the rising plume. The magnitude of temper-
ature perturbations (T (t = 0)) added to the flow is based on
(gβT b0)

1/2 b0/ν = 25.0, and is kept constant for all simula-
tions.

The grid spacing is uniform in the y− and z−directions and a
cosine stretching grid is set in the x− direction. The DNS em-
ploys a mixed spectral/finite-difference algorithm for the spa-
tial discretisation. While a fully conservative fourth-order, stag-
gered finite-difference scheme is used for the velocity field cal-
culation in the x− and z− directions, a Fourier spectral method
is used for that in the y− direction. The QUICK scheme is used
to advect the temperature field. The equations are marched us-
ing a low-storage third-order RungeKutta scheme. Further de-
tails of the numerical technique can be found in Ng et. al.[8].

Comparison of DNS results and theoretical model

Wall plume in uniform environment

Figure 3 shows of the statistical mean vertical velocity and
buoyancy profiles at different z/H locations in a uniform en-
vironment for R/H = 2 case. The mean profiles are obtained
by averaging spatially along the y− direction as well as averag-
ing across the time instances during which the horizontal front
travels from x/H = 0.5 till x/H = 2. In figures 3(a) and (b),
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Figure 3: Mean profiles of (a) Vertical velocity and (b) buoy-
ancy at 0.375≤z/H≤0.75 for the R/H = 2 case.

the x− axes are normalised with plume widths bw and bT , the
widths at which the distribution has fallen to 1/e of its peak
value. In the theoretical model, the mean vertical velocity and
buoyancy profiles are assumed to be self-similar with height.
It is clear from both figures 3 (a) and (b) that, within the region
0.375 . z/H . 0.75, the vertical velocity and buoyancy profiles
are self-similar.

Figures 4 (a) and (b) show, respectively, the comparison of mean
volume and momentum flux with the theoretical models. In
order to find the theoretical fluxes, we solved (8) and (9) nu-
merically with initial conditions of Q0 = 0.0, M0 = 0.0 and
F = F0 = 1.0 for c f = 0.0 and c f = 0.012. In the uniform
environment, the buoyancy flux F is constant with respect to
the height (i.e. F(z) = F0). The value of skin-friction coeffi-
cient, c f = 0.012 is obtained from our present DNS data. In
the present study, we used an entrainment coefficient α = 0.06,
which is determined by fitting the theoretical volume flux pro-
file to the DNS data for c f = 0.0. Grella and Faeth [3] have
found similar values of entrainment coefficient, which is about
0.067 for wall attached line plumes in an open environment. To
compute the integrals over the x− direction of the plume for
calculating the fluxes, we defined the upper integration limit as
x/H = 0.2, which ensures that the vertical environmental veloc-
ity is small compared to that of the plume. The mean volume
flux profile (figures 4 a) shows good agreement with the theoret-
ical model and the skin-friction coefficient has an insignificant
effect on volume flux. But the mean momentum flux (figures 4
b) shows moderate agreement with the model for c f = 0.012.
The difference between the model and the DNS data highlights
the need for improved models in future.

Time-dependent environmental buoyancy profile (∆∞)

As the plume hits the top wall, it spreads and advects down-
wards as a front (cf. figure 2). The front location and the in-
stantaneous buoyancy profile in the environment ∆∞ can also
be estimated from our model. As such, we solved the differen-
tial equations (6), (8), (9) and (11) simultaneously to obtain the
time-dependent environmental buoyancy profiles. Euler method
is used to solve these equations. In the Euler method, a pure
plume solution is given at the source (i.e. Q0 = 0.0, M0 = 0.0
and F0 = 1.0) and integrating (11) over each time step to obtain
the behaviour of ∆∞. The non-dimensional time step used in the
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Figure 5: Comparison of the time-dependent environmental
buoyancy profile with theoretical model for AR = 1.0 and AR =
2.0; (a) τ = 2.80; (b) τ = 3.8; (c) τ = 5.6; (d) τ = 6.60; (e)
τ = 8.8; and (f) τ = 9.6. The colour gradients of red and blue
indicates the starting point of horizontal average for two differ-
ent aspect ratios; (i) for horizontal average from x/H = 0.2, (ii)
for x/H = 0.4, (iii) for x/H = 0.6 and (iv) for x/H = 0.8.

computations is 1×10−4, which satisfies the stability consider-
ations. Here we assume that the time step (δt) is much smaller
than the spatial resolution (δz), i.e δt� δz and we also assumed
that the plume spread quickly to form a horizontal layer at the
top of the box (z = H), i.e. ∆∞(H, t + δt) = ∆(H, t). The com-
parison of the time-dependent environmental buoyancy profile
with the theoretical model for AR = 1.0 and AR = 2.0 is shown
in figure 5. Here, τ is the non-dimensionalised time, which is
defined as τ = t F0

1/3/R. We take the time τ = 0 as the moment
when the plume first touches the right wall, which is taken as
the reference time. The line-averaged buoyancy near the side
walls are considered to be environmental buoyancy, which is
used here for comparison. In figure 5, the gradients red and blue
lines represent the horizontally averaged buoyancy from differ-
ent x/H locations to the right wall for AR = 1.0 and AR = 2.0,
respectively. The solid black line shows the numerical solution

of theoretical model with c f = 0.0 and the dashed line shows
the numerical solution with c f = 0.012. The influence of skin
friction coefficient on environmental buoyancy is observed to
be negligible. Considering the assumptions involved, the model
shows reasonable agreement with the DNS results at all times.

Conclusions

We have analysed the evolution of wall attached turbulent line
plumes in a confined region using direct numerical simulations.
The Reynolds number of the confined plume based on the box
height and buoyant velocity scale is considered to be ReH =
14530, and for boxes of two different aspect ratios, R/H = 1
and 2. The results from the DNS are compared against a modi-
fied theoretical model based on BT [1], where wall shear stress
is incorporated to model the wall-attached plume. The distri-
bution of mean volume and momentum fluxes in the uniform
environment is observed to show good agreement with the the-
oretical model. The time-dependent buoyancy profile showed
moderate agreement with the model, and the effect of wall shear
stress on environmental buoyancy is found to be small.
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