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Abstract

Structures resulting from a Kelvin–Helmholtz instability have
been shown to contribute to skin-friction drag in turbulent flow
over blade-shaped riblets [4]. Using Direct Numerical Simu-
lation (DNS) data, the present survey of several different rib-
let shapes reveals that the contribution to wall-shear stress due
to the Kelvin–Helmholtz instability depends on riblet shape,
in addition to a previously known dependence on riblet size.
For a given drag change, sharp triangular and blade riblets pro-
mote development of the instability whilst blunt triangular and
trapezoidal riblets appear to suppress it.

Introduction

Riblets are streamwise-aligned surface grooves with sizes on
the order of 10 viscous units, that have the potential to reduce
skin-friction drag compared to a smooth wall. They are clas-
sified as passive flow control devices as no energy input is re-
quired to favourably alter the flow field, making them attractive
for aerodynamic, maritime and petroleum engineering. Labor-
atory tests have shown that riblet shapes suitable for engineering
applications can reduce drag by up to 8.2 % at Reτ , 700 [1].

The mechanism by which riblets reduce drag has been the sub-
ject of many studies [1, 9]. Streamwise vortices near the wall
induce lateral flow fluctuations. Small riblets dampen these
fluctuations, displacing the vortices upward and locally redu-
cing the skin friction as near-wall turbulence is weakened [9, 4].
Using the skin friction coefficient C f � 2©U�2

CL , drag reduction
compared to a smooth wall is defined as DR� 1�C f ©C f ,smooth.
In the viscous regime of small groove sizes, DR increases lin-
early with viscous-scaled riblet spacing s� � suτ©ν with a slope
determined by viscous theory [9]. The superscript � denotes
viscous scaling using the kinematic viscosity ν and friction
velocity uτ �

Ô
τw©ρ, which, in turn, is defined by the dens-

ity ρ and wall shear stress τw. For s� - 15, riblet tips of
conventional geometries interfere directly with turbulent struc-
tures [8] and riblets with s� - 25 increase drag compared to a
smooth wall [1]. For small changes in drag, DR� ∆U�, where
∆U� �U�smooth�U� is a shift in the profile of mean streamwise
velocity compared to that of a smooth wall at matched height in
or above the logarithmic layer. At Reτ � 395, DR � �0.1∆U�.
The breakdown of the drag-reducing regime was shown to scale
with the square-root of the groove cross-sectional area, `�g . This
scaling captures the drag change of various riblet shapes near
their optimum sizes at `�g,opt � 10.7 [4]. Multiple mechanisms
have been proposed to be responsible for increasing drag of a
grooved surface compared to the optimally scaled geometry.
Streamwise vortices above the wall are assumed to increase skin
friction inside the riblet valley by sweeping streamwise mo-
mentum into the grooves when the tip spacing exceeds their dia-
meter [2]. Another explanation for drag increase is that lateral
velocity fluctuations are not damped when riblets are widely
spaced, which allows them to interact with the geometry to pro-
duce secondary flow that transports streamwise momentum into
the grooves [6]. More recently, Garcı́a-Mayoral and Jiménez

[4] discovered that an inflection point in the profile of mean
streamwise velocity and a vertical permeability at the crest that
increases with riblet size, give rise to a Kelvin–Helmholtz in-
stability, which contributes to Reynolds shear stress and en-
hances drag. In this survey of six different riblet shapes, we
further investigate the occurrence of the Kelvin–Helmholtz in-
stability and measure its contribution to skin-friction drag as a
function of riblet shape, size and drag change ∆U�.

Numerical Setup

We conduct DNS to solve the Navier–Stokes equations of fluid
motion in channels using Cascade’s Cliff, which is a second-
order accurate node-based collocated finite volume incompress-
ible flow solver for unstructured grids. Domains are periodic in
wall-parallel directions and a constant pressure gradient drives
the channel flow at Reτ � 395. Riblets form the no-slip bottom
surface and are resolved by the computational mesh, while a
slip wall is located at the half-channel height δ above the riblet
mean-height. All simulations of flow over riblets for this study
employ the minimal-span channel concept [10], which reduces
the computational cost while providing accurate estimates of
drag for a given surface. In channels with small spanwise ex-
tent L�y , the velocity profile diverges from that of a full-span
channel for heights z� % z�c , where z�c � 0.4L�y provided that
this location is in the logarithmic layer [10]. For the present
study, the condition was met by choosing L�y - 250 such that
z�c - 100. Drag change with respect to a smooth wall full-span
channel, ∆U� is evaluated at z� � z�c to obtain a result that does
not depend on the channel width.

Results

The six riblet shapes considered in this study are trapezoidal
with opening angle α � 30°, triangular with α � 30°,60° and
90°, asymmetric triangular with fixed α � 63.4° and blade rib-
lets with a spacing-to-thickness ratio s©t � 5. Geometrical para-
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Figure 1: Meshes for different riblet geometries showing every
fourth wall normal node. The solver supports meshes with
hanging nodes. View spans half a riblet period of the symmetric
mesh between the crest and centre of the groove.



Case s� k� `
�

g α ∆x� ∆y�min�∆y�max ∆z�min�∆z�max L�x L�y ∆Tuτ©δ

ℓ
2
gℓ
2
g α

s

k

~��������������

TA18 17.9 8.9 11.8 30.0° 6.0 1.5�5.0 0.90�6.0 2054 250 50.8
TA31 31.3 15.6 20.6 30.0° 6.0 1.5�5.0 0.90�6.0 2054 250 55.9
TA36 36.5 18.2 24.0 30.0° 6.0 1.5�5.0 0.90�6.0 2054 255 42.8
TA50 50.0 25.0 32.9 30.0° 6.0 1.5�5.0 0.90�6.0 2054 250 65.6
TA63 62.5 31.3 41.1 30.0° 6.0 1.5�5.0 0.90�6.0 2054 250 47.1

ℓ
2
gℓ
2
g α

s

k

~����������������������

TI10 10.1 18.8 9.75 30.0° 6.0 0.057�1.5 0.033�7.0 1027 252 30.2
TI21 21.1 39.4 20.4 30.0° 6.0 0.12�3.2 0.023�6.9 1027 253 38.5

TI15 14.7 12.7 9.68 60.0° 6.0 0.083�2.2 0.041�7.0 1027 250 63.1
TI35 35.0 30.3 23.0 60.0° 6.0 0.16�4.9 0.014�4.7 1027 245 59.7

TI19 19.2 9.6 9.60 90.0° 6.0 0.11�2.9 0.047�7.1 1027 250 102
TI50 50.0 25.0 25.0 90.0° 6.0 0.23�7.1 0.029�7.0 1027 250 95.5

ℓ
2
gℓ
2
g α

s

k

~��������������

AT15 14.7 7.4 7.36 63.4° 6.5 1.5�5.0 0.40�6.0 1027 250 27.6
AT20 19.2 9.6 9.62 63.4° 6.5 1.5�5.0 0.40�6.0 1027 250 53.1
AT30 31.3 15.6 15.6 63.4° 6.5 1.5�5.0 0.40�6.0 1027 250 13.6
AT40 41.7 20.8 20.8 63.4° 6.5 1.5�5.0 0.40�6.0 1027 250 60.7
AT50 50.0 25.0 25.0 63.4° 6.5 1.5�5.0 0.40�6.0 1027 250 36.5

ℓ
2
gℓ
2
g

s

k

t s/t~������������

BL20 20.4 10.2 12.9 5.0 6.0 0.51�2.1 0.31�7.1 1031 265 100
BL34 33.5 16.8 21.2 5.0 6.0 0.85�3.4 0.31�7.1 1033 268 134
BL40 39.3 19.6 24.8 5.0 6.1 1.00�4.0 0.31�7.1 1035 275 141
BL49 49.0 24.5 31.0 5.0 6.0 1.2�4.9 0.30�6.7 1027 294 114

z

y x

Trapezoidal

Symmetric triangular

Asymmetric triangular

Blade

Table 1: Geometrical parameters, mesh spacings ∆� and domain sizes L�. The time interval ∆T is used to gather flow statistics.
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Figure 2: Drag increase measured by a shift in the profile of
mean streamwise velocity in or above the log-layer, ∆U�.

meters are provided in table 1 and examples of meshes are
shown in figure 1. Cascade’s Adapt was used to refine unstruc-
tured meshes close to the wall, where large gradients are expec-
ted. Based on a comparison of smooth-wall minimal channel
results to spectra of velocity fluctuations by Moser et al. [11],
we chose a streamwise grid spacing of ∆x� � 6 and at least 128
tanh-spaced nodes in the wall-normal direction (Reτ � 395) to
achieve similar accuracy.

In figure 2, drag increase is shown as a function of riblet size
`
�

g . Reference data for triangular riblets with an opening angle
α � 60° [1] and blade riblets with a spacing-to-thickness ra-
tio s©t � 4 [5] are finely spaced along `

�

g and illustrate the
breakdown of drag-reduction with increasing riblet size. Drag
changes of two cases from this study in the range 9.7 $ `

�

g $ 23
(]Y) closely match experiments for the same geometry (]Y). Ex-
pressing the riblet size by `

�

g combines height and spacing to
collapse drag curves, particularly for sizes near the drag min-
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Figure 3: Visualization of Kelvin–Helmholtz rollers in
wall normal velocities with contours from blue to red at
��0.5,�0.3,�0.1,0.1,0.3,0.5�w� for cases TI21 (a, b), TA31
(c, d) and a smooth wall (e, f ).

imum (`�g,opt � 10.7) [4]. The shaded region envelops the range
of slopes for small triangular riblets with 30° & α & 90° accord-
ing to viscous theory [9]. The drag curves of all considered
riblet shapes collapse well in the drag-reducing regime and are
close even in the drag-increasing regime. In order to investig-
ate flow mechanisms that lead to a loss of performance, chosen
riblet sizes start near the optimum and increase into the drag-
enhancing regime.

Spanwise elongated structures resulting from a Kelvin–
Helmholtz instability have been observed immediately above
(, 20ν©uτ) riblets [4] and porous surfaces [7], because the
profile of mean streamwise velocity of these flows has an in-
flection point at the height of the roughness crest [3]. The
spanwise extent of these Kelvin–Helmholtz structures can be
up to about 1500 ν©uτ and their average streamwise spacing
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Figure 4: Premultiplied 2D co-spectra of Reynolds shear stress �k�x k�y E�uw in the plane at the riblet crest. Normalization:
uw� � D�0 D�0 E�uwdλ�x dλ�y . Contours are from blue to red at ��0.2,�0.15,�0.1,�0.05,0,0.05,0.1,0.15,0.2���uw��. The horizontal
lines on the left mark the riblet spacing s and the open boxes near the top delimit the region of Kelvin–Helmholtz rollers (65$ λ�x $ 290,
λ�y % 130) [4]. Cases 13L (s) and 20L (u) are for channel flow data from [5].

is roughly 150 ν©uτ to 200 ν©uτ [5]. The presence of such
spanwise elongated structures is visible in contours of the wall-
normal velocity component at a height of 5 ν©uτ above the
riblet crest. A representative flow field of the drag increasing
case with sharp triangular riblets (α � 30°) in figure 3(a) il-
lustrates this spanwise coherence. For the case with equally
sharp trapezoidal riblets, matched `

�

g � 20 and thus comparable
∆U� shown in figure 3(b), such structures are less pronounced
and they are noticeably absent in flow over a smooth wall (fig-
ure 3c).

The Kelvin–Helmholtz instability affects a distinct spectral re-
gion of velocity and pressure fluctuations of flow over rib-
lets with `

�

g % `
�

g,opt [4]. Energy accumulates in stream-
wise wavelengths 65 $ λ�x $ 290 and spanwise wavelengths
λ�y % 130. Two dimensional spectra of Reynolds shear stress
are shown in figure 4 for the plane at the riblet crest. The spec-
tral region associated with the Kelvin–Helmholtz instability is
framed to ease comparison between cases. For blade riblets (fig-
ure 4r-w), an increase in energy in the boxed region compared
to the smooth wall is evident for all drag increasing geomet-
ries (figure 4t-w), as Kelvin–Helmholtz rollers form , 20ν©uτ
above this plane. Almost all combinations of wavelengths in
the considered spectral region transport streamwise momentum
down into the groove towards the no-slip boundary. Two cases
with `

�

g � 12.9 and `
�

g � 21.3 and a spacing-to-thickness ra-
tio s©t � 5 (figure 4r,t) are compared to similar geometries at
Reτ � 550 from [5]. The reference cases (figure 4s,u) have sizes
`
�

g � 12.4 and `
�

g � 20.4 with s©t � 4. Results agree despite the
much smaller domain size and lower Reynolds number of the
present simulations. For triangular riblets with an opening angle
α� 30° (figure 4g,h), energy at wavelengths associated with the
Kelvin–Helmholtz instability contributes significantly to Reyn-

olds shear stress �uw�. A peak is noticeable even for the drag-
reducing size (figure 4g). This contribution diminishes with in-
creasing α as the riblet tip becomes more blunt (figure 4g-l). For
trapezoidal riblets (figure 4b-f ), the portion of Reynolds shear
stress in the framed spectral range is small compared to the total
at this wall-normal location. With increasing riblet size, more of
the short streamwise wavelengths in the considered region carry
a negative contribution to �uw� and thus transport streamwise
momentum out of the groove. Asymmetric triangular riblets
(figure 4m-q) also have low energy in the considered spectral
region and for the larger riblets, short streamwise wavelengths
convect momentum out of the groove.

In order to quantify the contribution of the spectral region
associated with the Kelvin–Helmholtz instability to Reynolds
shear stress, energy is integrated over previously identified
wavelengths [4],

�uw�KH � �E �
130

E 290

65
E�uwdλ�x dλ�y . (1)

A balance of streamwise momentum in a control volume that
fills the grooves (hatched area in sketches of table 1) shows the
composition of wall shear stress, which can be written as the
sum P� �V� � uw� � 1. Here, P� is the contribution of the
driving pressure gradient inside the grooves. The transport of
streamwise momentum into the groove through viscous diffu-
sion V� and the Reynolds shear stress term �uw� are evaluated
in the plane of the riblet crest, i.e. at the top of the control
volume. The integral in equation (1), �uw�KH represents a por-
tion of �uw� and is shown in figure 5 for all riblet geometries.
For the large triangular riblets with opening angle α � 30° (ZV),
approximately 6 % of wall-shear stress is a direct consequence
of structures in the spectral region associated with the Kelvin–
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Figure 5: Contribution of Kelvin–Helmholtz rollers to the total
wall-shear stress for different riblet geometries and sizes `

�

g .
Reference data by [5] at Reτ � 180 and Reτ � 550.

Helmholtz instability. For blade riblets with `
�

g � 22, a max-
imum of about 2 % is reached, but for larger geometries�uw�KH
is found to decline again towards values obtained with small,
drag decreasing riblets. Reference data from [5] (vu) for blade
riblets with s©t � 4 at Reτ � 180 and Reτ � 550 in figure 5
agree with present results as also seen in figure 4. In flow over
trapezoidal (�) or blunt triangular riblets (]Y \X ��), �uw�KH
does not contribute substantially to wall-shear stress. Profiles
of mean streamwise velocity for these cases have an inflection
point at the height of the riblet crest and the flow field at some
instances shows spanwise coherence. Nevertheless, time aver-
aged co-spectra of Reynolds shear stress demonstrate that struc-
tures occupying the spectral region associated with the Kelvin–
Helmholtz instability in the plane at the crest do not contribute
to drag increase. It is apparent that the contribution of Kelvin–
Helmholtz rollers to total wall-shear stress at the crest of a
grooved surface depends on multiple parameters defining the
riblet shape. Note that further analysis is needed to quantify the
contribution of the instability to ∆U� from all wall-normal loca-
tions. For riblet geometries with a given ∆U� (figure 5b), struc-
tures resulting from the instability have high �uw�KH for sharp
triangular riblets while trapezoidal riblets with the same open-
ing angle have noticeably lower �uw�KH . For geometries with
small �uw�KH , the breakdown of drag reduction collapses when
scaled by `

�

g (figure 2), while the large triangular riblets with
high �uw�KH have a slightly different drag curve. The presence
of Kelvin–Helmholtz rollers appears to promote the increase of
drag with `

�

g [4]. Riblet shapes that suppress the development

of the instability seem to have a more gentle breakdown of drag
reduction with increasing riblet size, which does not however
affect the lowest attainable drag.

Conclusions

Flow over riblets is generally susceptible to a Kelvin–Helmholtz
instability, but the appearance of spanwise aligned rollers de-
pends on the riblet shape. Sharp triangular and blade riblets are
found to promote development of the instability, while blunt
triangular or trapezoidal riblets seem to suppress it. For trian-
gular riblets with an opening angle α � 30°, as much as 6 %
of wall-shear stress is directly attributed to Kelvin–Helmholtz
structures in the plane at the riblet crest. This percentage is pos-
sibly higher for larger or sharper triangular riblets than the ones
presently considered.
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