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2 PRESSURE TOSSES. TN VISCOMEIRIC CAPTifamy, /%"
2 adut o TUBES. OF VARYING. DIAMETER .. . ., . .. |

Ril. Tenner and L.W..Linnett . . . . o
Department of ;Mechanical Engineering;. University of Sydney.
Kinetic energy losses of. very:small.magnitude-arise from:the

use of capillary tubes of slowly varying radius. The calculation
of the losses in such tubes using angextensioniof searly work by
Blasius is described and applied to typical tube profiles. A
tube- shapengiving:-zero kineticrenergy loss-is described. - /1The
range of ivalidity of)the Pressure-loss equations oincterms jof o0
Reynolds number is deduced:from:experiments son-tubes-of exponen-
tiadly incneasing:-radium,..,-L_rCOJ;(ga_.ziﬂonf-with available rviscometric
datarleads to ‘reasonable lagreement. - . idiron (o) [omsHeveortTdt

|
J

1. Introduction s <.
(2biaiThe jdesireto _“.-ing;_mve.,wisconigtric,\ ‘accuracy has recently led
Cawiand Wylie .(y:r«'bq introduce capi-m-cﬂscmemer-a-.ﬁith.:lc:ng-..'
flared transitions-from. capillary:to bulb  (fig, 1b).: By thisos

svmeans ithe :"kinetic ienergy'’ effects are-made much.smaller ‘than: .-

ay-aglusey Lirfte 15

ies(£ig.-la)and enhanced aceuracycan
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be obtained (1). To take full advantage of the new desigm, it
would be very useful to have a theoretical estimate of the
kinetic energy effects. This would, for example, enable a
single-point calibration to be used over a wide range of
Reynolds numbers without loss of accuracy. With the standard
capillary (fig. la) it seems impossible to calculate the
pressure losses because of ‘the' separation of ‘the emerging

Pluid from the walls at 'the end section’of the tube, but with
the flared capillaries no such separation is to be expected at
sufficiently low Reynolds-numbers, ‘and a calculation based on
the assumption of non-separating laminar flow seems possible;
at some critical Reynolds number the caleulation will become
invelid and seperation will develop. The present paper under-
takes such a calculation and presents experimental evidence to
estimate the critical Reynolds number. .S

2n '.l’heoretical Deveq.opment

Mhe available work on axisymmetrical flows:ois limited--
there is'mothing like the work-of Fraenkel (2, 3)'on'which to
base the present calculation because there 1s no simple self-'
similar “solution in axisymmetrical  flows corresponding to the
Jeffrey-Hamel (4) solution. -However, in view of the very small
rate of divergence used by Caw and Wylie (1) it seems natural
to base the calculation on the early work.of Blasius (5).

The ‘Blasius calculation () is not very useful as it stands,
because ‘It ‘predicts no extra loss above the Stokes (negligible
Reyriolds number) loss in a‘symmetrical capillary starting and ]
ending ‘at“thersame diameter;- this includes viscometers which have
effectively infinite bulb/cepillary sizes. ' However; by considering
a further term in the Blasius development, useful results can be
obtained. The authors have not found such an extension in the

literature.

Starting with the Navier=-Stokes equations for incompressible,
axisymmetrical flows (6) the following equations are to be solved:

. (il e (Pu 1au . d
V& u—E=-; = F+;§?+B_z.z (2)
%z"i'%'ﬁgu'_z = 0 (3)

where v, u are the veloclity components in the r (radial) and
z (axial) directions respectively, p is the pressure, p the
density; and”v the kinematic viscosity. S
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Consider-flows:in a' tibe of slow :
1y varying radiu
the sense” that changes in| radius’ of el Loy
a distance of order L; and s ?o ARG piacebin
1 > Ro/L T+(a)

MThisiis thé. Biésius assump. tion: ( ). It
: 3SE). It T
continuity equation /(3 ) that, if : e A

- -

u

0 @) SobelqtaLs 0(5)
1051 Rof/L).c ' | .(6)

where - is tﬁe mee.nlrflow veloecit ‘
¥ in-the z-directio
section  where the tube radius is Rg+ - Using the fzc:t gSm
f h 2

(6), that the radial velo
cities are
axial velocities, it is found that S naka

then .‘ ¥ Iv

]

0oz oM, efRty e
fag g = o(l;%,- paa) e ®)

where . is'the viscosity and (Ap)y,” (Ap); are“typical pressure

changes. ig tge r, 2z directions. Thus, up to an error of
order__(Bo /L2) D may be 'treated as & function of 'z oply" d
equation (1) and the final term on the right hafa' sidey’fan
equation (2) may be ignored. Treating p(z) ' as the 'mea;:

pressure across the i I
i section, and normalxsing'the equations

R=rRo;* Ziz z/L; U= u/t_x;_ 75 vL/Rou;

P = pRo3/pul, equations (2) and (3) become

13 U E

R aR( RV ) _.7+ oZ = . ‘ (9)

13 (R3U aProoin of, ¥ 6.3

RaR< I8 /e - e( g_g_}u%tz_r) (20)
where Tet= WRGR/VL 2R/ wel (11)

iﬂg Sei:vth: volumetric flox_-r rate through the tube. Note that

e, fa.z Reynolds number (e). iscbased on the characteristic
[} he tube; ¢ is considered a:small -parameter d

expansions in terms of e are assumed: : e

U= Uo+ eUp+ € Uste.. (12)
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with-similar forms,for Viand P: It is easily verified that
no singular perturbation problems {7 ) arise;  the wviscous
terms may be made to dominate  the inertial terms everywhere
in the flow for small e-

The problem of integrating (9) and (10) using expressions
like (12)ids'trivial; ‘only. quadratures: are:involvedi: :If: the
dimensionless tube radius is G(Z), then  the zero order:

(e = 0; ~Stokes flow) solution is obtained by integrating
({10) after multiplying by R then repeating the process to
obtain Ug. ' 'The two arbitrary functions are determined from
the zero of velocity on the boundary and the zero of aUO/aR
on R = 0. Multiplication by 2xR and a further integration
gives the discharge; this is' equal torunity in the ‘dimension-
less form chosén. - Thus dPy/dZ is' found'to be (W mokd

dPo =3 (s TE 8 slov Lalx
i N (13)

This is the familiar Poiseuille law in differential form.
Up is already determined; equation (9) finds Vy:
oy scivsifee (1Fpmeete)in B (12)

Jalation anateR (R ey e - (15)

where G' = dG/dz. Inserting 83,2V into tﬁe-?.h:'s.. 'é:f‘ ‘
equation (10) and equating terms of order ¢ yields a further
equation which may be integrated in ‘the same way. = Using ‘the
fact that ; . e ; \ L= 3 <
GigRaR L 0

the Bldsius’(5) result Is found: -

%" _agas. T | (16)

Uy = GG ( -29-.- R2G2 4 RAG™: - '?9_51'36(}"8) (a7)
vo= mae (L og s faent SEEC)

e 2n"2 = -8

wrem (BB )

Substitution -of ‘equations of 'type (12) into (10) and equating
powers of “eZrgives thevequation 000 : Ty { Pl RAS.
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Integration gives' the result for dP/dz as’

ap . ' S Pl
= _ - 8gT4 ( O S = ol ¢ Lk I 20
az 56 " 3160 @ *mo g+

4 O(e""‘)) 7 | (20)

Equation (20) is correct up to terms in < op (Re/1)2
whichever 1s largest. A single integ:‘afidnrergzg{g 1’:h'e
pressure loss through any shape, tube of small slope and
curvatuge to be determined; in a symmetrical tube the terms
in €, € disappear,) leaving only the even powers of
Finally, the following form may be found: =

X pB_p‘A = %04 [ j:B G %4z + %’-( GB'4 = GA'i ) +
(

+ =2 1 & 1l de

;Jll;iting (21) in terms of z and eL instead of Z and ¢ shm}s that
e choice of L is arbltrary. In fact, by using a new coordi-

nate £ — Z ]
= Ple) / €, one cela.n find a single equation for U and

JLa 7 _ag e T - o S R
RoR\ "oy = Ef'“%”(%fo R )R o)

‘I::Ea;::ein:eg;-;tion, using an initially parabolic profile,
ate the series solution given above The

. solut
:iizFill limited.to small e, however, because the effect 0;1‘011
E :Ll;-g { = Z/e is to compress the axial coordinate for high
teyno S numbers ,Esoathat the wall slopes become steeper and
erms of order Ry®/L® cannot be ignored.
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" that G, = Gp in (21) the where K, K" are ‘constantsi’ ‘K'fs"given below "(Dabie 1)
Foi Sygmizr;;:iszﬁzegrigégs due‘té tergs of order for three ‘shapes ‘of'‘interest, 'all ‘of which have G'Z 1
£irst chan / eyols erfd ¢dsb :

eéfs Thesg too will be zero if, from (20}, a2z = _
1 are G’ (23) Shape via= : Range of Z : K

b 0T nLEr ; : _,

\ G'= 1+ 2 “fcone) 0 to e - .0336

x & <'exp." 7 (8) . . 0tow - .0407

Integration yields Tk él % e) ./g)/e (lj DS el + .0005

s w%,/8, 5 4 G = (1 = Z) /2 (En o0 any , .0000

This shape, taking the negative sign, is. shown in fig. 2. s A Pressu;r_e S AL s Gl A L SRS
It is close to that used by Caw and Wylie (1) over part Thus K may be positive or negative, depending on the
of the range of Z/L. : shape.  For a viscometer, (25) shows that the expected

’ ¥ relation between the viscosity and flow time will be of

5. Applications the form
Assuming symmetry, the pressure differences in various : “u At Bt-a Wlusing (t-T) (26)
shapes may be estimated. All cases give a pressure _ )it : ,
difference of \the form , : where A'is the usual positive calibration constant and B
g i - : 7 (55) is given by i _
A_-P L K’I-IQ [ JEEE K€2 ] ; 1 5 I 2 : 4
£rEH0 [ gt | L 4G L BT R M B YRR By (27)
‘<.3pti‘mo| : . where 1} is the volume of fluid discharged in time t. Further
i detailed calculation based on equation (21) gives the theoretical
195 1 curve for comparison with previous experimental results (1).
: ( ;/ ‘ Fig. 3 shows that excellent agreement between theory and
/’o-s(w exp 0+62) .
A
i
W -02] Std.Cap, (expt) ,
b4 P
ok Al
! Vs
Fd
o Ol s
- rd
= 4 theory
(T s
@ /’ Cap. IV | ®
: 8 # . 2T NS Ll
d 'OO ® < ,. - (] : v " )
y S ’ . i 1 ' | T —
" L3 i ’ ¥ ¥ - I d - ¥ 2 s L g) :
=4 e R =l o Z o . jo/e) : 200 Reynolds Nunber
i ) i far zero kinetic energy losses. '
oiSer 21 [odvibe f"m-Pe ; : ‘ Fig. 3.  Corparison between experiment and theory for
capillary viscometer tube IV, référence (1).

This range ‘has Geen chosen %5 fit the results from capillary
IV, reference (1). )
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experiment occurs below a Reynolds number. of, about 200. d(In
the present case the variable used as ordinate by, cgﬁi an

Wylie (1) in their fig. 5 has been replaced by the e oze 3
approximation 2/3 K ¢=.) The large losses in standar lg;p
laries may be noticed..  .There is also disagreement qﬁktl ge
flow rates (not shown), where it was found (1) tl;xg.t £ ;h
second term in (26) is better represented ms »Bt *. | g.
approximations used in analysis are invalid in tms‘._reg_;:zs?,
and no agreement can be expected. The value of e corr R
ponding to;the Reynolds number (based on capillary diame :E 1
of 200 is about 2, which is perhaps a larger value than migh
be expected for validity of formula (21).  For example -
Patterson (9, 10) using two-dimensional tubes of exponer; Ly
increasing width, showed experimentally that thel criterion

separated flow Was approximately .

W s ) ot (28)
By = v dz *
where w(z) is the half-width of ‘the channel.” “Blasius'(5)
calculation gave values of Rg.about four times, too,large, .. ...
and thus prediction of Rg is unsafe. * In order to check on ...
the value of Rg in axisymmetrical flow an experiment on a
tube of (approximately) exponentially increasing radius was
performed (8). The exponential shape is convenient because
the value of Rg 1} benysdoalf (1 %o sfwlapbiftcal

ed
i 1 for this shape. The actual profile as measur
12 Zﬁnyiil fig. 4. (The "Araldite” channels were cast on

(in).0 : ‘
Q-5+ |
L.O:2 1 - ! ~ 5

Z

-.Fig._ 4 Actua.l _"tuBe‘._i,n ﬁrdfile«

: Actually other criteria including G'', G"‘ ,- etc. are involved
in'determining “the“eritical ‘Reynolds number . e )
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a polished steel ‘mandrel  and & parallel dnlet: portion was
arranged before ‘the ‘test section. )’ Despite great tare no.
menufacture and testing ‘the results et predicting pressire o
losses from‘the measured shape Were only fairi' rthe Stokes [
loss and “the' Blasius ‘component) could be' estimated within

5% or so butinoaisetul) estimate of the Second-order =
effects could be found; “the'‘Scatter on dats: was rather

, larger than the second-order effects; these in turn were
\‘smaller then expected due to slight\ deviations' from the

designed exponential rrofile. In fact, the extreme sensi-
tEVIEY of ‘the integrale (L) b6 smanl ‘profile ‘Changes ® -
suggests that only quite low accurecy (¥ 204)can be 0!
expected in predicting second-order effects. However,

this is not a great drawback when dealing with shapes' ‘sHowing'
very small second-order effects.

Ve t

e / (Of'¢ ‘at'Which the assumed”
flow pattern bréaks’ down. '* Figi® 5 shows "thé-'i';'}res‘su;-é Toss'“-
as & Tunction of & For' the diffusing secticn of. the ‘capi 1dry.

U ore’ dritere st 18 the Vale'of'e

Fig. 5. Pressure-loss as a function of ¢ for
exponential channel.
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. It 4s clear: that je.~ 1-is the dimit rof Blasius-type ({1 =
flow: for this particular tube.. ' The reason:for the fadnstrs
persistence of Blasius; flow in.the viscometer experiment:’. .«
(1) may 2ie in the fact that.for given ey the valuerof: ==
Rs is lower.in.a.tube in'which G{(Z) = d + eXpe & than fiw: ae
in a tube With, G €Xp. B, due.to, the G'/G factor. i o -
Hence it appears;reasonable to.define  fHouet 0 himooiad:

ol TR

e aTe T lsbioiafies Aoz ing L4BD)

as the approximate limit of Blasius type £low.and the region .
of wvalidityrrof equation (2ldwmmalwolZbiivp Rlnoedems) adasnay

R o L)

e BIE ISR s Pt [ by M 2

The foregoing analysis enables a useful estimate to be

mede of. kinetic, energy effects; in Jlong-flared capillary.

viscometers, (L).vp. to & critical Reynolds, number: .. This, .|
1imiting. Reynolds number. (29). is noughly in agreement with, ..
those deduced by Patterson (9, 10) in a two-dimensional

tube. Since the kinetic energy effects are extremely small
up to the separation values, a fairly inexact calculation
appears to be adequate for viscometric purposes. This is
fortunate, as quite small varistions in tube shape affect the
values of the loss coefficients appreciably. N,
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