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meter, The rah‘tﬁ.onshigp mea;nqqn ﬁgym T, contrection
ratio, and cavitation parsmeter hes ‘been mhm&aﬂ mﬂaz' ‘
constant 'bgekm npnﬂltﬁ;nm Mer & graphi _
bas been ssuggested for locating amﬂ,w @g,spm of ., ztiion
in & Quadrant-Edge, Orifice  meter; qﬁhutsnt;ateﬁ swif axperimeqx‘ al
results, This method could as well be applied to other similer
pressure differential meters. Valves of Iimitiug E.ncﬂ.piant
Reynolds' hhmbers are also furnished,

SATANOWA Q2 zoeenl -x@ “~ ; : J
INTRODUCTION: W.'e a g.e\x vestigators have touched upon the
‘ﬁ% s a *witatz ion on metering devices and wezy little r - |

ing the dinception of cavitation

m? «--mm-& pt has been made to study these T“ ‘

is paper mainly mmm *the inception of mmam in
t-Edge m-mm meters “
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likely to introduce @pml errors. mm, nptieal,\a;neﬁla-
tical and electrical methods have been suggested. mwaraéhm
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aive instruments-and-Benc \‘% “er ine”\'ﬁl!'ll'.‘r.ux-\ accoug-
tical methods fail mtimu because of the vibration noige snd
other noises of the power machines used in the system.
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SPECIFICATION OF THE METERS USED:

The Quadrant-Bdge Orifice

plates used in the present investigation have the following

specifications:
ratio :-:- Manometer tapping
1. 0.225 04100 n—n/z tappings
2. 0.400 0114 Ak
Ja 0,500 0:135 3
4. 0,600 0:210 i
5. 0.630 0.380 .

*iotations are explainéd at the end of this paper

EXPERIMENTAL SET-UP:

The set up is ahown in figure 1. A centri~

fugal pump of capacity 900 gallons per m:hmte at a head of 120

feet was used to supply the water for the system.

Two by-passes

of 6" dia. each were used to by-pass the surplus waf,er. . The
test section consigted of 20 ft. upstream section w:LEh 4% dia.
G.I, pipe and sbout 25 ft. downsiream section with 4" dia. pipe
out of which 4 feet was made of transparent perspex sheet“and
the rast of G.I. The water was collected in s_calibrated

collecting tark of capacity of 150 dﬁl{:?.‘r;ifedt.

fhe downstresm end was fitted with a gate valve and a
reroury-water differential manometer was used to register the”
pressure at a point 4" upstream of this sate valve. )
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EXPERTMENT AL PROCEDURE -AND DATA COLIECTICN:. . Pressures P, and
were moasured for various discharges keepiug p. as a consi:ant

value. 'cThis procedure-is repeatad for various constant Py
values (Refer Fig. 2).

Py

The-onget: of cavitation was determined by hearing the
characteristic noise as. well as by visual obsswvation for check-
ing the validiby of the.method suggested,

ANALY SIS OF THE PROBLEM: The problem.-is solved under the
principle of simple-hydrodynemic aspect .of ithe flow gystem.
Referringito:Figure 2, the dynamic.equilibrium betwesn Bis By
and V completely eharacterlaes ‘the .flow-picture acroas and
dgtmstream of .$he orifice platei: The combination .of Pyl P
a.nd V, shows(upqin.the.discharge.coefficient C and so.in pife
.ELds' Number The dwnstream conditions can well be
represented by-p. and Vatls is keptiasia constant. quantity
in the snalysis,%s Paptibr ;m - e represent .the cavitation
conditiong; b, and;V; may -be combined 'with p..;.the saturated
vapour pressure to f%m aqcavitation paramater,

P,em P {
St s oomtnes (1)
v, /2

Hence a plot of pipe Reynolds’ Number againat, conrpletely

depicts the flow conditions across and dmatres.m of the orifice
plate, provided, the back préssure’p, is“kept eonstant, ' Since
cavitation‘entails always in’ loss of energy, there-would be an
extra “lossof energy’in the downstrean-secticn-under-cavitating
conditions’ than under‘noncavitating;” other conditiona being -
smilar For“a particular’Reynolds' Number, therefore; s will
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be veduced undericavitating conditiona, since p, is'kept cons~
tant. . The ‘effect of this reductioncincp, would-be to reduce

the value of @ i7" S0 ‘one cancexpect cacdeviation=in the plot

of ¢ versus Reynolds' Number under cavitating conditionss
Figs. 3, 4, 5 and 6 show a plot of ¢ against P , under
constant back pressures of 0 (atmosphericg 57570 and 15 feet
respéctively.  'The ‘division’of byt plistonly (60 getoall:

the data with a single graph fora’constant™pli’ “Itiseengsther’
cavitation paramater holds more or less the same functional rele-
tionship with“F irreapectwe of “the f ratio, "4 p, s Keptl'
congtant . "5 7o significant deviationcanbe dezected from i
figures 3, «4; 5"and 6, “¢hé ‘same data have been plotted in’logs7io
Log scals 1A figures '? By 99 and 107" "Itcan'bevaeén that the
slopes of “the ‘gtraight lz.nes are different undericavitating-and-
noncavitating ‘conditions, with'a® steepew slopesforthe“latter .
as per the arguméntsigiven’apboves  Cbvicusly the pointiat which
the brdak’ 6écdrs Tepresents the conditions at'thssonget ofscavi="
tations ' “The inception points’obtained by ‘visual examination =
and by héaring £hé noise’are also plotted in the' inget. block:
disgreme in each of the figures. ' It may'be noted”that these
points scatter below the point obtained by the above mentioned
graphical solution. . This method could be.applied to other
metering devices as well, aince the plota are made to non-
dimensional axes.

LIMITING REYHOLD"’ NUI ER.FOR: INCERTION OF CAVI’I‘ATION

The study has been made forwarlcms back-presaures, a.nd the
minimum-back+-pressure that may be -expected in any metering: .
ingtallation.is atmospheric: and hence, the: Rsynolda Number, at 4

which thesinceptioniofcavitation takes:place, with free: d:l.soharge

conditiong representssthe minirmm: valueibelow vhich .cavitationy ;. :.

cannot be expected to occur. This value is different for differ—
ent ratio and may be:different for other metering devices.
Figure 11 shows a plot of such critical Reynolds' Numbers for
various . /2, ratios of ‘the Quadrant-Edge Orifice’ meters, i oAll the
pointa £allsin a. straight lide and ‘thus enabling ' ‘one 5o’ separate
and designate the portion to the. leﬂnaﬂ "Non—cavitatmg. Zone™.

and to the right as "Cavitating Zone". ~But cavitation could be
eliningted at Reynold's Numbers to ﬁhp rlght of “this straight

line by mitably inereasing the back‘ presaure to increase the
system presgsure, = ki e ;
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CONCLUSIONS:

t. A simple graphical method is presented for metering
devices to locate exactly the onset of cavitation.

/ 2. With congtant back pressure conditions, the cavita-
/8-0-450 A= 0580 . tiorll paramet?r ¢ has the‘same functional relationship with
fdnbci o Aoimiaspisars | |4 /Back r ; ammasprins R, irrespective of /5 ratio.
Fi 99 5 Fact =it R - 1 3. Minimum incipient Reynolds' Numbers have been suggest-
¥ A o | 95 slorect R ed for various ratios, below which cavitation cannot be

{ ot expected to occur under any circumstances.
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FLOW BELOW A SUBMERGED SLUICE GATE AS A WALL JET PROBLEM

W AeERIand |

A

~ ratio of diameter of orifice to T
the diameter of the pipe '

by N. Rajaratnam
Gept. ot Civil Engrg., Univ. of Alberta, Edmonton, Alts., Canada
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pipe Reynolds' Numb
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This paper presents a study of the submorged flow below a sluice
gete s the case of o plane turbulent wall fat gseer almost zero
préssure gradient with a backward fiow slaoed avsr |1, Experiments
Bave been conducted for four supercritick! Frougs Mgaers from 3.010
to 6.44 with the submergence factor v#rying fram 71.60 to 2.24. The
yelocity distribution in the #fully gwveicped region follows closeiy
the curve for the classical wail fet with a slight ditference only
tn the scale factors.

The boundary shear stress has been measured
\’\h\\ %ith a Preston ftube. The fiow earrainment and the energy fall have
\ € #1s0 been considersd. The aptendix presénts some calculations for
\ A i " e, o = i
) Ry 5 & A o The classical wall jet.
ameter of the pips b TAN
P o Sk

N

NN % i dairoduction:
cawi_ -ﬂt‘éf:um parameﬁe; [

| W { il The wall jet is defined 3s a jet of fluid, impinging tangentially
saturated vapour P{‘fﬂm o 2t an angie) on » boundary, surrovnded by stationary {or moving)

AR e o o Piuld. The case of the ciassical wali jet, i.e. the plane turbulent
weil jet issuing into the same stationary fluld of semi-infinite
#xtent, on @ smooth boundary, 1s shown in Fig. L, inwhich vy, Iis
*5ne¢ depth of the stiot and Uy is the velocity which is ossuméd to be

. i G\/a@qg\w:c‘g_:)“ ‘ - FQ\

! [ N DR \ O saiform for the entire depth of the slot, A very full discussion of
R A e 2 Ao L 3he wall Jot problem with an account of ths other investications has
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- @m=n given by Rajarstnam (1,2).
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_ j For the cliassical wall jet, the velacity distribution has been
ol | _.00kfstlvad Yo ted -Yhdosxe [e3so0l o lacoiveh——- 1 faund to be fully developed and similar for x;’v‘l}‘:, 15, where x is
: i I B #ae tongitudine! distance from the siot. . The length scale at any
. " | . z r
_:5“’:'53 st :ij‘”b‘;:" “‘b" doad aa 9ada A ;’ A \ #uction Is the norme! distsacedfrom the boundary at which the velocity
YLy w’?%‘&“ snolionut | . SV ERETT &

is aqual to half the max imum-velocity u
fdy 1s negative. The velocity scale |5 The maximum velocity u, at
W section. This velocity distribution curve has been finalised by
fwarz and Cosart (3) and Rajaratnam {1) using the available experi-~
P #ental information. The nondimensional distance ¥/8;, s represented
S Y] end the corresponding nondimensional velocity u!um by () ).
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For the clmssical wall jet, Sigalla {4) found that

8,/‘\,—' = 0.5 + 0,065 x/y} A1)
|bris eonabiyy eldau R
| L 10 ug/Uy = 3.45 (x/y,)70+50 @)
Ty Ar 59 :
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7 & is the boundary shear stress at any secilon, written as
FloURE '2 @ ¥ e
el sl

C‘o = Gy (’Uir'z

: T~ ¥
; N =
CRARHICAL METHOD J‘OA‘EGCAZWG [NCEDTIOM 8

(3)

i® ¢, Ts YThe coefficient of skin friction and € is the mass densivy




