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Sb 1imit between Wmixing' zone and Tfully
turbulent zone' :

¥4 backward difference:

€ eddy kinematic viscosity

Eq, eddy diffusivity

'Iz transformed coordinate in the boundary layer
e . ‘dimensionless temperature in ths boundary

layer : )

’.p, }A.t molecular and eddy dynamic viscosity

V kinematic viscosity

F density of the:fluid

T, turbulent shear stress oz 1y
@ transformed dimensionless stream function
‘\J}‘ stream fuction

Subscripts.
w quantity evaluated at the wall

00 quantity evalusted at “infinity

Primes denote differentistion with respect to 'rz :
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THE .EFFECT OF LEEWAY ON.THE HYDRODYNAMICAL
FORCES ‘THAT“ACT ON'A BOAT

by
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SUMMARY -

The paper considers the forces that act on & boat of general shape
as_a result of the component of its motion in the direction
perpendiculer to its longitudinal axis. The only restriction on the
shape of the boat is that the tangent plane at any point on its surface

must be nearly parallel to its vertical plane of symmetry so that it
is legitimate to replace the boat by a flat plate lying in the vertical

. DPlane of symmetry of the boat, the plate and the boat having the same

outline.

An approximate analysis is developed for the case when the Froude
number based on the length of the boat is small. According fo the
zeroth order spproximation the surface of the ocean acts as a

reflection plate and finite ving theory may boused to calculate the
forces acting on the boat.

Detailed results are given for the next approximation for a boat
whose draft is either large or small compared to its length. TIn the
former case it is found that changes in the Froude mumber affect the
distribution of trailing vorticity over depths of the order of the
length of the boat, whereas the effects of surface waves are confined
to-depths of the order of this length multiplied by the square of the
Froude number, and have a negligible effect on the forces. In both

cases it is found that the ‘side force acting on the boat increases with
the Froude mumber. ' .
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1. Introduction.

Considerable effort has been devoted to calculating the flow due
to, and the drag force acting on a boat that moves over the surface of
the ocean in the direction of its longitudinal axis. However, when
the velocity of the boat has a component in the direction perpendicular
to this axis the drag is altered and 'a side force is developed. Little
attention seems to have been devoted. to these effects although in some
cases they may be large, as instanced by a yacht seiling across the
wind.

This paper considers these effects for a boat of general shape, the
only restriction being that the tangent plane at any point on the sides
of the boat must be nearly parallel to the vertical plane of symmetry
of the boat.  Then only small errors result from replacing the boat
by & flat plate lying in the vertical plane of symmetry and having the
same outline as the boats

The analysis is developed for curved as well as flat plates so
that the case of a cambered strut protruding vertically from a stream

is ipcluded.

2. General Theorys.

Let Ox*y*z* be a set of rectangular axes with Oz* vertically
downwards, the origin of O being on the undisturbed surface of an
ocean of infinite depth which at large distances from 0 is moving with
uniform veloeity U in the direction of Ox* ,

Suppose the surface of the ocean is pierced by a curved plate,

hereafter referred to as the keel, whose displacement from the Ox*z* plane

is everywhere small and whose projection on that plane is bounded by
the curve :

2% = h*(x*) 0 x*s L. (1)

Suppose that the motion due to the presence of the keel is small
and that the velocity potential is -Ux + ¢
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Introduce the non-dimensional quantities

= hiad z* *
X = = = NS
T Y=L, s, wely

and let equation (1) in terms of these variable be

E+Ez h(x) 0€ x< y -
Then the acceleration potential
. .
ol agl | (2)

must satisfy

o 3)

throughout the region -w < x < 0
» <y<w 0<z <o and i
uniquely determined throughout that region by ﬂ;e following éonditio:az

B _ 2%
. = F = 2
3s a-;i 0" ifor' z =0 (%)
where! Fsv —ie : is the Prouds :
4 . — cude: number ‘and: g is:the accaleration due
to gravity,
D = f(l,:)

for y=0 and x,5 in 8 a4
= 0 for ¥y =0 and X,z Mtin81] (5)

it being supposed for the present that £(x,2) is & known function
{ w 80¢ f (80D B . i 4

® -0 at large distances from 0 2 (6)

the. Kutta-Joukowski condition: , '® = .0+ (7

at the trailing ed '
inoTina ““3.3 ge. of the plate, and finelly that thers be'ng upstreanm

An expression for @ may be derived v
sl froi
orla. paper by Michell (1), This equation g]..:ga tglgem:b:&u::im b
velocity potential ¢ due to a thin ship, that is symmetrical sbout

the Oxz plane, in terms of the values of
is in the present notation -

= g(x,z) ‘there, and
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cosn ¢ cosn z,008 w(x-x,)g(x,,2, )dz,dx, dwdn
=9 Np? m?
(x‘l> -\Fn2+ way

oo 1h P =
+ _szff °n - h.mz) a’inn(-g+s1)ooaw(xbx1)g(x1,21)651 dx, dwan
T B A
0000

ror el R

oo i }{3:1) -"’n2+w2y 3 1
T~ o
0000

3'32'2(5'."1)!111[‘(”1 )+ \E ;w -1 y] g(z1,l1 )ﬁli 6115-'

1
EE fz ff("'l )_..L.... o-rzwz(a-rl‘l)"'l’%-;;' T eos '&41')8(31#1 )ds1dx1dw "
o g TR
Differentiating this -equation with Tespect to’ y igives the :;1‘1:0:021
gﬁ in terms of its values, g(x,s) , on 8, « Itis concluded hife
tga problem considered herein

Dlx,y,s) = I, +T,% I, 4 th + 15(,
where ;

b)) 77 ;

N ;2.5 ]-Tff e n‘w g Sl °|.:|lgnlt|'iligé"(lbxi)f(-:t;",l:')dl"-d.x‘han N\

sinn(z+3, )oos wix-x, )f(x, %, )ds, dx dwdn

2
(11 ) 2 B-PZI (l.+31 )nos[:i(r-%l )+ J; i‘IIZ-'I y] f(x‘t %y )d{, ﬂ?,ﬂiﬂ

4 o
2

@ 1 b)) 2.2 - 3, )as d.z dwdn

&, ).,2 ,-?2'2('“1) w1’y

cos wlx-x, M(x,,32,)ds, dx,dn

(8)
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The integrations with respect to n and..w in the expression for I

may be resolved for .

cosnz cosnz, = % fcos n(s+z1) + cos n(z-z1)] 5

w2z
fe T cos n(z+z1)dn =
0

. A K1[wfy2+ (z+z1)21%]',
2 2.7
I+ (z+z1) ]

and (9,
© . 2 2 2%

fw K1[w!yz+(z+z1)2]!] cosSwWX dw = M 3/2

0 2i12+y2+(z+z1 )21

the latter two results being ‘given by Bateman (2),

}

Thus

&,)

8-

1. = 4 + A z}f(z »2,)dz, dx
! [r(x-x1)2+y2+(z+z,>2]”2 [xx) ey (ema, BB, 1710

(10)
3. The case when F is small,
——n F is small,
3e1 Zero order approximation.

Putting P = 0 1in equation (8) gives &(x,y,z) = I, and I, 1is given
by equation (10). This shows that O(x,7,2) is the potentisl due to a double
layer distributed ‘over S, ‘end §1—, the image of S, with respect to the
Oxy plane. The strength of .the layer is-an‘even function of £, and is
2f'(x1,z1) for (11,51) in S, . This is the familiar result of finite wing
theory which thus gives .the zeroth order ‘approximation to the. flow,

It is noted that when F = 0 s (&) becomes

@

ﬁ F e o for "z'='0 H
which is in agreement with the .above result.

3¢2 The first order approximetion in P2 o

Pormal approximations to the various terms in equation (8) are made and

the resulting velocity potential is investigated to, see if it satisfies the
conditions required of it,

Thus formally,
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o ®® 1 h(x1) 5 Wy : :
2 Z4Z - ’ )dz ax, dwdn
I, =~ %Fz—f[[f !n— .sinn( + )cos wix-x ):l’(:x;l 2,
0000
+ o(F)

ax

= _ %ffsz&o -\my cos n({+z,)cos w(x—x,)f(x,,,)ds, dx dwdn af
0

+ O(F“')
z 1 bix,)
- 2_2 ff ! Yl ) az,dx,0  + O(F") (11)
00 [a=x)?+5+ (422 é
using the results (9) ,
‘ (12)
= 0 Fl" -
I (¥7) 1 ht,) :
2 (x,,2,) dz,dx, (13)
‘and IA_ + 15 = == (R.P.) J £(x,,2,
00
NPT R
where. J% & f'2 5-32'?(5-0»51)-»11(:—11 R Y ae (14)
Putting w = '—2 and evaluating (14) formally by the method of steepest
F
descent it is ‘found that equation:(13) becomes
- 3(x—x1) .
; agevis e (15)
Bt f f [(x—x G o, )

This approximation to Ih- + 15 is independent of 2z so that its
contribution to @ - ecan be considered as being absorbed into the arbitrary
lower limit of integration with respect to { 4in'equation (11) .

Thus the formal approximation to equation (8) given by equations (10)
to (15) is ‘

f(x1 ,21) dz,dx,

y £(x,,5,)
e e i B A

+
=
Im
NS
=
=
e

¥ >
. [{ (x=x, )2+12+(z+=1 )2 Gfaat [G=, )2sys B )zﬁfﬁ

(14) |

the lower limit of integration for ¢ “'in the 2ng term on the

taken as o« 30 that

from =0 to x- gives

x1h
b(x,7,2) = ;j;[”
00

5 z 4 h(x1‘)

(x,)
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R.H.S. being

=i 0 as z-w,, Integrating with respect to x

[[(fﬂ )y +(z+8 )2]3 [(E-x )y +(=-= )E ]7_]
f(x1,=1) dz,dx, af

¥ f(x.lrz-!)

F- a
. E/o” [Gex) g2 Caay) 172 P14 (17)
0

Now if f(x1,z1) in

is, 'since ‘the first term on the R.H.S.

(17) is chosen to vanish at the trailing edge so that
condition (7) is satisfied, @

each’of the conditions (2) ‘to (?) to order -
is satisfied because to order F2 N

-ﬂ with ¢ glven by (17) will satisfy
For example condition (4)

[P

of (16) satisfies % =0 for z = 0.

f(x1,z1) dz,dx

()

¥ -y
[[ (x-x1)2+y2+( z+3, )2] 2 " [ (::-'::,1 )2+y2+( z-5, )2]75]

1

8 f(x.l 131)

1h
+E 0
w axofof [(1-11)2+32+(z+x1)2]7§ dz,’dx_l}

The only unacoeptable feature of the e

2nd term on the R

xpression (1 fo is t
HeS., ¢p* say, where ( 7) s S

Jy f(x1121)
i (::-x‘l )2+y2+(§+z1 )2]75 it
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has too strong a singularity at the originm, 0 .T }

It may be shown thet ‘near 0
2 ¥ f(x1 »0)

4 :

a SRS iy [ =

3'5[ g2 7 2 &%
z + Nz +(x-x1) 4y

(0]

¢-u

al™

Sonst,

.and that f‘(x_,',O) ~ for x, small, so that

1

conat.[P_,iz (ELT;{) -3 Ly ((Taiz_){)}

2)'I§ (18)

¢l ~
(x2+y2+z

where -?___12_ and Q_Ji are Legendre functions of order -':’g' .

143 noted that (18) implies that the fluid speed ~ -—%72 for r
A . r

small where r = (x2+y2+r,2)5 so_that the kinetic) energy of the: fluid:is

not bounded near 0 . The singularity of ¢ at O is thus too strong and

be eliminated. : )

This mey be done by subtracting from the expression (17) a term ¢**
Which has the same behaviour near "0' as does ¢* ,
at largs dlstances from O and satisfies the condition (4) for z =0 .,

However, for the present investigation . ¢** may be neglected as it is

easy to see that it will not give rise to a term of order 1?2 in the force
that acts on the boat. Firstly (17) shows that the velocity components

correspording to ¢** are at most of order F° . -Also by (4) the’ length
scale of the motion corresponding to ¢** L ig ofl'.onier .1?2 s0 that the weloci
components will be negligible except for depths that are less than order F2 .

{The results given by Peters (3) for the (stronger) singularity corresponding
to a moving pressure point show this behaviour explicitly.] It i concluded

that the contribution from ¢** to the force is of order F‘h' s0
stated above ¢** may be neglected.
¢** , but not @
characteristics.

18t as
However, it is of interest to note that
as given by (17), represents _a motion having wave like

3.3 The Direct Problem.

Consider now the direct problem, i.e. the problem of determining the foruuﬂ
when the displacement y = d(x,z) of the kgel from the Oxz plane is' given
and not f(x,z) . Instead of the first of conditions (5) ¢ must satisfy J

f This was pointed out o the author by Professor J.J. Mahonye.

has appropriate behaviour|

. 3.3¢1 Case of boat ¥hose draft is large
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7] a d! tI!‘ -
5% = = B: . for y =0 and x,z in S.l . (19)
Let £(x,2) = £ (x,2) + ¥ £:x,2)5 " +, Lo(F?) (20)

and substitute (17) with f ' given by (20) into (19). Terms of zero order in

F__give
x 1h,)
_ 2 d(xys 3 2 f 1 ¥ ¥
2d(xm) | 1 gyney 2
* Ty an—i!o [[(E-x1')2+32+(=+=1)2]5/2 k [(6-:1)2+y2+(=-s1ﬁ}§

fo_(x1‘_,s1) dz,dx,df , for x,z in Sy o (21)

Terms of order r2 glve

2 d,(x,z)
x il 1 tmd d
- ax .271 &

1 16,)
¥ y
y=0 °F f { { [[ (E-x1)2+yz+(n+s1)2]3/ 2t [(5-11)2+y2:(n~51)213}

£ (xy,2,) dz dx,d¢ ,  for x,z in §; (22)

z 1 hx,)
1 22 1y £ (x;,2,) dz,dx,af
x T 34 axdy [(x_x1)2+y2+(€+z1)2] 3/2 (2

®©00

Each of equations (21) and (22) is a articular case o i i
: f the integral equat
1lifting surface theory. Equation (Z‘S is used to determine Ty vdis;.'ch- igua FH

substituted into equation (23) to give.. 2d,.. . Finally equation (22) is used

to determine _f1 ° . . \ Tx
Equations (21) to

boat is either large or

considered in turn.

(23) may be considerably simplified if the draft of the
small compared to its length, and these cases are

compared to its Jdength.

Consider the case when S_' is the rectangular region 0 < x < 1

»y O<z<H
where H > > 1 and

a(x,2). ‘= - ax for 'z,.z in s, .

Then equation (20) may be replaced by 1ts’e

uivalent for two-dimensions
so that its solution is approximately 7 ent for two-dimensional flow

1 -x,

fo(x1,z1) = - ﬂn
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It may be shown that substitution into equation (23) gives

=
oy 1 .
8&1 3 ¢ 2 [ E I dx_', (
. s xO r.+‘\lz 4_(x-x1) _ ﬂ

Equation (22) is replaced by the simpler equation to which it'corresponds
in 1ifting line theory. This is

T, (z) F T (z)
- -ﬂ1 = 175 ¥+ :?f 31':1 dz1 ’ : (2%

=00

where « ;. and B, are the incidence and angle of zero lift respectively
corresponding to e displacement y = d_l(x,z) defined by equation (24) and
T, (z) is the circulation sbout the lifting line which is supposed to coincide
with *te Oz exis. It may be shown successively that

e

o [z+ sz+(x-z1)2] g \iz2+(x-i1 ')2

a, -8 = dx-ldx

‘MI »

o Y—.

(24

-

2. lw ” 2
Ca p: F(g,_ =& ) aé
7% [ 2Nz 912452, £2

0

where . F. is' the complete’ elliptic integral of the’ first kind. In deducing
this result: thevtransformation 'x= 1'1 =& , x4+ *.=n 1s employed.

The expression (26) for d1-ﬁ1 is singular for 2z =0 anc it may be
shown that for z. _ small ¢ ‘

a,-p, = & [[105 2124 [4=3 10g 4] 1og z] + 0(1) (2]
™

Let the sclution 'I‘1(s)‘ of “equation (25) with a1-ﬂ1 given by equation

(26) be expressed as 4

ria) = 1) {2 g

where 1‘21)(:) is & function that satisfies
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- 2B00 _Ba.
. " %[[1088]24.-[4-516‘_&.]103(;)}.,0(1)
(1) (1)1 o > Q% 5 S
I|“l (2) 1 WI.1 (51) 4
T = Ir _31__"‘3_621 = for. z s@ul (29)
0(;'13‘). for = large

say .

I Yoy
Then 1‘52)(:) must satisfy

I‘SZ)(E) g = @ P$2')1(21) ;
T 4, e 3 ' B (30)

ety = §0=a(D)

_m‘

The L.H.S. of this equation is not singuler for (z(=0 s 80 that its solution
may be obtnimd by a stendard method.

1 .
T )(z) was taken to be

P£1)(z) = a +a,(zlogz-z)+ a,z 0<z <1
, (31)
a_ - .
= '—22' +i ‘-52 ¥ z.> 1
z 2

Il(lz:s'e the a': 'wera determined by the conditions (29) and the conditions that
I“l and I‘S ) be continuous at z =1 ,

Equation«(30) was -solved by Multhopp's method, see L), 'usin, uniformly
spaced pivotel.points with spacing 0«2 ', 3 e ¢

Results are given in Figures 2 and 3 .

oy Tt follows from equation (20) that the total eirculation I'(z) is given

T(z) = Ty (s) + ¥y (5) 4 o)

where I‘o(z) = Wa is the circulation for two-dimensional flow, Thus if
CL(z) denotes the local side force coefficient then

CL(z) = 2ra 4+ oF° I‘1(z) + o'(Fz) - (32)

and the values of I‘1(s) are given in Figure 2 ,
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3+3.2 Case of boat whose draft is small compared to its length.

Consider the ¢ase when' h(x) < < 1 and is a monotonic increasing
function of x for 0 <x <1, "and ' .

d(-x,-s) = -ax %2 in '8, e

Then the solution of the slender wing theory approximation to equation (21)
is, Robinson and Leurmann (L)
‘ @ h'(x,)
4
fo(x1,z1) = = - "
1~
1%(x,)
Substitution into equation (23) gives
24 b EA B b5, ). a8, dx, 0
?ia—i-limitﬁvf[f 1 L
& Ty=+0?%®Y [(x—x1)2+y2+(§+51)2] 3/2[ ?f. : :r

00 1=

atels vi%6ag)

The R.H.S. of equation (34) is simplified by introducing a fundemental
approximation of lifting line theory. Thus

f _a¢ = 1 I: ! £+ 3 :r
[ (x=x 3 )2+y_2+ (4 +2j )2] ;?./ £ (x—x1 ) 2+y2 [ (x—x1 ) 2+y24-(§ +-z1) 2]#‘;

is spproximated to by-: - 1 0

Substituting into equation (34), performing the integration with respect to
z, s and integrating partially with respect to X,/ 'gives, ‘supposi. g

h(0) = 0 and h'(1) = 0 |
o atgF dui Jfuld (6
1 (=) —3 (=)} ax,
4 L Jimit §-[ e
Tx }-I-y_'_o IO (11‘1)21-}’2
faer -
. 3 ;
177 () e,
. @12 ts) [ 9%,
11 - X
0

P

30

15

20

05

G ;151

'@

FIGURE. 2.

FIEGURE": 3.

r Fleuee &
SHApPE oF
KEEL
0.4f
oahs
5 ’ ‘ x
0 04 06 o8 10
r:{
-
e




C'152

where P denotes that the Cauchy . principal wvalue of the integral is to
be taken.

If the total side force acting on the keel is
L= I, +FL, +o(F) ,

then according to slender wing theory

Jumpey . 2 2 2
Ly ="5 (1) and ;.1 = Zai(1) n(1)* ,
a1(x) being defined by equation (37) &

For the particular case when

n(x,) = B(1)ikx, =62 4 4 - Y2, @ >~ |, u*

it is found that

L o= Ta n¥(0){1+ 3570700 + o) . (3

The function h(::1) “given by equation (38) is shown in Figure 4 .
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