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Abstract 

Blood flow in the cardiovascular system operates on a 

periodically-repeating time scale which influences flow-driven 

mass transport. For this reason, it is difficult to model 

physiological phenomena that have characteristic time scales 

larger than that of a pulse period. In attempt to overcome this 

limitation for mass transport, this study looks at reducing flow 

variations within a time period to a characteristic flow profile, via 

time averaging over the whole period. A computational model is 

developed to capture transient physiological flow physics, and 

incrementally record the flow-field for time-averaging. The 

calculated time-averaged flow profile, which represents the 

effective convective velocity in a time period, is then used as a 

convective vector field for scalar transport. It is shown that the 

time-averaged flow-field is inappropriate for deriving other flow 

variables such as wall shear stress, but may be used for transport 

purposes as a convective profile. 

Introduction 

The cardiovascular system is a circulatory transport system for 

blood, which carries nutrients, wastes and other materials to and 

from tissues throughout the body. The system is predominantly 

driven by the heart, which creates pressure differentials to drive 

blood flow. Physiological blood flow characteristically varies 

temporally and operates in a periodic manner due to the rhythmic 

contractions of the heart. Flow transport is therefore irregular on 

a continuous monotonic time scale. 

This makes it difficult to assess the evolution of physiological 

phenomena that operate on long time scales, but are also 

influenced by the short periodic time scales of the flow. Mass 

transport is such a phenomenon that is both an important process 

to the function of the cardiovascular system and is integral to the 

genesis and development of cardiovascular diseases such as 

atherosclerosis and thrombosis. Concerning atherosclerosis, the 

transport of low density lipoprotein (LDL) macromolecules from 

the lumen to the surrounding arterial wall plays an essential role 

in the inflammatory responses to the disease, particularly at 

regions with abnormally elevated concentrations of LDL. 

Experimental studies have established that wall shear stress 

(WSS) induced by dynamic blood flow, plays an important role 

in the regulation of LDL flux from the lumen into the arterial 

wall [9]. Analogous computational models have also been shown 

to confirm such findings [12, 13]; however these studies often 

neglected important characteristics of physiological flows, 

particularly the temporal nature of the working fluid. The reason 

for this omission is noted to be primarily due to the difficulty in 

modelling both short and long time scales for many time periods; 

because of the large difference in characteristic sizes of the two 

time scales involved, a complete resolution of both time scales 

would be prohibitively expensive on computational resources. 

Consequently, developments of complex models associated with 

the cardiovascular system have been in part hindered or else 

simplified by this limitation. It is the intent of this study to 

overcome this limitation by identifying methods to unify both 

time scales into a single continuous scale. One such approach 

involves averaging flow-field variables over a characteristic time 

period [7]. The purpose for this being that temporally varying 

variables reduce to single values. In the field of cardiovascular 

flow modelling, this approach is popularly applied to obtain time-

averaged statistics of WSS and residence times of flow-

transported scalars [1, 6, 8, 15]. 

Whilst the above approach is satisfactory for flows that reach 

periodically repeating behaviour within a few time periods from 

arbitrary initial conditions (generally 3-4 periods for blood flow 

in moderately complex arterial geometries), it may not be so if 

there are extra physics applied to the model. This is true for flow-

transported scalars with high Peclet numbers and complex 

boundary conditions, where a lot more time periods may be 

required before the solution takes a periodically repeating state. 

In the case of modelling atherosclerosis, this becomes 

particularly important for scalar transport at near-wall regions, 

where most of the significant physics takes place. 

Since the temporal flow-field is known to converge to a 

periodically repeating state with reasonably few iterations, this 

study attempts to work with the stabilized period flow-field to 

derive the other variables of interest. For practicality of use, 

particularly in the modelling of atherosclerosis where the time 

scale of interest is orders of magnitude larger than the periodic 

time scale, it is useful to combine both time scales into a single 

continuous variable. To do this, time averaging of the whole 

flow-field rather than derived variables is performed. The 

averaged flow-field can thus be treated as a fixed velocity profile 

and used for other physics such as scalar transport. In doing so, 

integer multiples of a single period length can be made to 

represent a unit of time on the average flow-field. 

Model Setup 

Geometry 

Bifurcating arterial geometries are noted to contain disturbed 

flow regions in both steady and unsteady conditions. These 

disturbances are commonly found at the flanks of the bifurcating 

site (refer to figure 1), and are generally wall-attached 

recirculation zones. It is known that the size of the recirculation 

zone varies within a given period, indicating that the walls they 

attach to experience low and oscillatory shear stress; both of 

these being important parameters in the formation of 

atherosclerosis [9, 11]. As this study is concerned with evaluating 

the appropriateness of time-averaged flow in cardiovascular 

modelling, it is seen fit by the authors to set it in the context of 

flows that are used for atherosclerosis modelling. Therefore, for 

the purpose of investigating time-averaged resolution of such 



disturbances, a simplified 2-dimensional arterial bifurcation is 

selected for this study. The geometry is the same as that 

presented in [4], and is the 2-dimensional channel section found 

at the symmetry plane of a symmetric bifurcation; its dimensions 

are provided in figure 1. The geometry comprises of the 

bifurcation site, which is the region of interest for this study, 

particularly at the outer walls of the bifurcation. Flow extensions 

are also included both upstream and downstream of the region of 

interest, so that it is minimally affected by the inlet and outlet 

boundary conditions. This is particularly important for 

simulations involving transient physiological flow, which may 

cause for reverse flow regions to emerge. 

 

Figure 1. Computational domain of interest geometry (shaded region); 
flow extensions added upstream and downstream; units in [mm]. 

Governing Equations 

If the geometry presents no significant disturbances to the flow-

field, then within medium-sized arteries at typical physiological 

conditions, flow is predominantly laminar. Therefore, to describe 

arterial blood flow, the unsteady incompressible mass and 

momentum (Navier–Stokes) continuity equations are employed. 

These equations are given by: 

∇ ⋅ 𝒖 = 0 (1) 

𝜌𝜕𝑡𝒖 + 𝜌(𝒖 ⋅ ∇)𝒖 − 𝜇∇2𝒖 + ∇𝑝 = 0 (2) 

Where the velocity and pressure fields are denoted by 𝒖 and 𝑝 

respectively. The working fluid is assumed to be homogenous 

with isotropic properties characteristic of blood in medium-large 

arteries; density is given by 𝜌 = 1050 𝑘𝑔/𝑚3 and viscosity by 

the Newtonian approximation of = 3.05 × 10−3 𝑘𝑔/𝑚/𝑠 [2]. 

Scalar transport is implemented using an unsteady convection-

diffusion equation. For, the unsteady scalar transport equation for 

a scalar concentration 𝑐 is given by: 

𝜕𝑡𝑐 + 𝒖 ⋅ ∇𝑐 − 𝐷∇2𝑐 = 0 (3) 

Where 𝒖 is a divergence-free vector field and 𝐷 is a constant 

isotropic diffusivity. For this study, the scalar is set to represent 

LDL concentration within blood flow, therefore a typical 

diffusion coefficient of 𝐷 = 5.0 × 10−12 𝑚2/𝑠 is assigned [2]. 

 

Figure 2. Labels of boundaries Γ𝑖 and domains Ω𝑖 for geometry (where 𝑖 
is an index). Local boundary coordinate systems are denoted by the 

surface normal axis 𝑥𝑛 and tangential axis 𝑥𝑡. 

At the flow inlet boundary Γ𝑖𝑛, the scalar is assigned a uniform 

Dirichlet condition 𝑐 = 1 and the flow velocity normal to the 

boundary is assigned a scaled Poiseuille velocity profile 𝑢𝑛: 

𝑢𝑛 = 2𝑓𝑠𝑢𝑎𝑣 (1 − 4 (
𝑥𝑡

𝑑
)

2

) (4) 

Where 𝑑 is the arterial inlet diameter, 𝑓𝑠 is a scaling factor and 

𝑢𝑎𝑣 is the average flow velocity at the inlet, derived from the 

bulk flow Reynolds number: 

𝑅𝑒 = 𝜌𝑢𝑎𝑣𝑑 𝜇⁄  (5) 

The scaling factor 𝑓𝑠 is defined as a function of time, such that its 

time-average over one period is 𝑓�̅� = 1. The temporal profile of 

𝑓𝑠 is derived from [5] and is provided in figure 3. In steady-state, 

the scaling factor takes its time-averaged value 𝑓𝑠 = 𝑓�̅� and 

equation (4) becomes a standard Poiseuille velocity profile. 

 

Figure 3. Physiological flow scaling factor variation in one period. 

At the flow outlet boundary Γ𝑜𝑢𝑡, a zero-flux Neumann condition 

is assigned to the scalar transport equation. This condition is 

unrealistic as it forces a fully-developed state on the growing 

scalar transport boundary layer. However, due to the inclusion of 

flow extensions at the outlet, it is not expected that this condition 

would affect the scalar transport in the domain of interest Ω2, and 

so is safe to use. 

At the boundaries Γ𝑠𝑖 on the symmetry plane, symmetry 

conditions are assigned to both flow and scalar transport 

equations. The remaining Γ𝑤𝑖 boundaries are walls, and so are 

assigned with no-slip wall conditions in the flow equations. For 

the scalar transport equation, the boundary conditions are not the 

same for all Γ𝑤𝑖. At the wall boundaries Γ𝑤1, Γ𝑤4 and Γ𝑤5, a 

scalar transport boundary layer is of no interest to this study, so a 

Dirichlet condition of 𝑐 = 1 is assigned to prevent its formation. 

At the wall of interest Γ𝑤2 and its downstream wall Γ𝑤3, scalar 

flux into the arterial wall is modelled as the sum of convective 

flux (due to water infiltration velocity 𝑉𝑤) into the boundary and 

diffusive flux away from the boundary [3]; this is given by: 

𝐾𝑐𝑤 = 𝑉𝑤𝑐𝑤 − 𝐷
𝜕𝑐

𝜕𝑥𝑛
 (6) 

Where 𝑐𝑤 is the scalar concentration at the boundary and 𝐾 is the 

endothelial wall’s permeability coefficient to the scalar. Water 

infiltration velocity is set to the generally accepted constant value 

of 𝑉𝑤 = 1.78 × 10−8 𝑚/𝑠 [10]. The scalar’s wall permeability 

coefficient is set to that of what would be expected of LDL 

permeability, and is assigned a WSS 𝜏𝑤 dependance. Following 

the results of Himburg et al. [5], the permeability coefficient is 

scaled to take the vale 𝐾0 = 2.0 × 10−10 𝑚/𝑠 at undisturbed 

flow regions [14], where the undisturbed flow WSS magnitude 
|𝜏𝑤0| is approximated by the Poiseuille flow result: 

|𝜏𝑤0| =
8𝜇2

𝜌𝑑2 𝑅𝑒 (7) 

The resulting description of the permeability coefficient is given 

by the power law correlation: 

𝐾 = 𝐾0 (
|𝜏𝑤0|

|𝜏𝑤|
)

0.118

 (8) 

Model Description 

The governing equations and associated boundary conditions are 

assigned to the volumetric domains Ω𝑖 and enclosing boundaries 

Γ𝑖 respectively (refer to figure 2). In this study, the model is 
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implemented and solved using the unstructured finite volume 

solver ANSYS Fluent v14.5. 

For this study, three modelling cases are assessed: 

1. Steady-state flow and scalar transport 

2. Time-averaged flow and scalar transport 

3. Time-averaged flow and steady-state scalar transport 

In case 1, all equations for a given Reynolds number are solved 

to steady-state (unsteady terms in equations (2) and (3) are set to 

zero and 𝑓𝑠 = 1). In case 2, all equations are solved in transient 

form for at least 𝑁 periods; where 𝑁 is defined as the minimum 

number of periods required for the flow to stabilize periodically. 

At period 𝑁, the flow-field and scalar distribution (and other 

variables of interest) are time-averaged over the length of the 

period, as denoted by equation (9) for the generic variable 𝜙. 

�̅� =
1

𝑇
∫ 𝜙 𝑑𝑡

𝑡0+𝑇

𝑡0

≈
1

𝑇
∑ 𝜙𝑖∆𝑡𝑖

𝑖

 (9) 

The time-averaged flow-field in case 2 is then used to drive the 

scalar transport in case 3; for this analysis it is solved to steady-

state. The purpose of this case being that the time-averaged flow-

field represents convective transport of the scalar variable over 

the length of a whole period. 

Results and Discussion 

The present study is made for physiological flow conditions, 

therefore a Reynolds number 𝑅𝑒 = 500, typical of medium-large 

sized arteries, is considered. Since solutions are expected to be 

Reynolds number dependant, to generalize results to 

neighbouring Reynolds numbers, the following dimensionless 

parameters are defined: 

𝑢∗ =
|𝒖|

𝑢𝑎𝑣
, 𝜏𝑤

∗ =
𝜏𝑤

1
2𝜌𝑢𝑎𝑣

2  (10) 

For this setup, convergence of the case 2 unsteady flow-field was 

achieved by the third period. Using this converged periodic state, 

a comparison of the luminal flow velocity profile for the steady-

state and time-averaged flow is given in figure 4. Both flow-

fields are noted to display similar behaviour at regions of 

undisturbed flow (e.g. location 1 in figure 4). However, at the 

bifurcation site, particularly at the recirculation zone, variations 

in the flow-field are distinct (locations 2 and 3). 

 

Figure 4. Comparison between steady-state and time-averaged luminal 
flow velocity distribution. 

In time-averaged flow, the recirculation zone is notably smaller 

in length, with higher velocity at its downstream end (i.e. at 

location 2); indicating that its length varies throughout a time 

period. The presence of high velocity in the recirculation zone is 

a result of signed velocity vector averaging over the time period 

(refer to equation (9)) and not due to a physical manifestation of 

the flow-field; it is therefore physically unrealistic and may lead 

to inaccurately derived flow variables. An example is given by 

the unrealistic spike in WSS derived from the time-averaged flow 

(figure 5, case 3, position 0.6). This indicates that derived flow 

variables of the time-averaged flow-field would be inappropriate 

representations of their actual values. The purpose of the time-

averaged flow-field is therefore not to derive other flow 

variables, but rather to give a single time-independent 

representation of convective transport of the flow in a period. 

Flow variables of interest should therefore be explicitly solved 

for via time-averaging from the temporal flow-field; for example, 

the WSS calculated in case 2 (figure 5). 

 

Figure 5. Wall shear stress along span of Γ𝑤2. 

Furthermore, since the flow velocity is a vector quantity, then at 

locations where the signed flow direction varies, the time-

averaging of derived vector variables will differ from that of their 

magnitude. This is illustrated by the WSS of case 2 in figure 5, 

where the magnitude average is always greater or equal to that of 

the vector average. The vector average WSS is noted to closely 

resemble that of the steady-state case at regions of undisturbed 

flow; i.e. where the flow was little affected by the recirculation 

zone. However, within the recirculation zone, particularly 

towards the downstream end, there is a marked difference which 

corresponds to the temporal variation in size of the recirculation 

zone during a period. 

For this reason, depending on the requirements from time-

averaged vector variables, either formulation may be of 

importance. In the case of atherosclerosis modelling, if mass 

transfer at a wall is modelled as a function of WSS magnitude, 

then the time-averaged WSS magnitude statistic would be 

required alone. If a measure of oscillation is also required, then 

both time-averaged WSS vector and magnitude statistics would 

be important. The difference between both statistics provides a 

measure for WSS direction variation in a period; such that a zero 

difference would imply WSS with no signed direction change. 

Referring back to figure 4, another location of flow variation is 

noted at location 3, where an apparent recirculation zone is found 

attached to Γ𝑤4. However, the local time-averaged flow-field 

does not display reverse flow, but rather a low-velocity zone with 

no signed direction change. This indicates that the temporal flow 

has a short-lived recirculation zone within a period. The presence 

of this recirculation zone, though short-lived, will influence the 

process of mass transport into the arterial wall. That this short-

lived recirculation zone was not revealed by the steady-state flow 

indicates the importance of resolving unsteady flow for better 

capture of WSS and thus mass transport into the arterial wall. 

Whilst providing a useful measure of the temporal flow-field, 

time-averaged flow, as described in this paper, has thus far found 

very little use in the study of cardiovascular flows. A potential 

application is investigated in this paper, where scalar transport is 

studied under the convective influence of a time-averaged flow-

field. A summary of results for the scalar described earlier is 

given by a plot of concentration distribution on Γ𝑤2 (figure 6). As 

denoted by the plot for case 2, scalar transport did not reach 

periodic repeatability within the five periods tested; where five 

periods are regarded as computationally excessive for tasks 
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involving multiple iterations of this process. For this reason, 

making use of time-averaged flow to describe the convective 

behaviour of a period is especially useful. 

 

Figure 6. Scalar concentration along span of Γ𝑤2. 

From the scalar distribution plot, it is noted that all three cases 

display similar results in the upstream regions; where flow is 

little disturbed. However, judging from the apparent convergence 

of the case 2 scalar profile, two distinctive peaks are noted (at 

positions 0.3 and 0.45). The larger peak appears to correspond to 

the peak of the steady state profile of case 1 and the smaller to 

that of case 3 (derived from the time-averaged flow-field). At the 

downstream end (i.e. aft of position 0.5), the case 2 scalar profile 

is better represented by that of case 3. However, as the case 2 plot 

did not converge, these results are not conclusive. 

An overall assessment of the plot reveals no significant 

relationship between either of the three case studies investigated. 

As such, the effectiveness of the time-averaged flow field in 

convecting scalar transport cannot be conclusively commented 

upon from these results. Further studies are required to verify 

this; particularly the final convergence state of the case 2 scalar 

profile for appropriate comparison to the other cases. 

Conclusions 

This study investigates time-averaged flow of a periodic flow 

profile for the purpose of representing convective transport in a 

period. With applications in cardiovascular flow modelling of 

mass transport, this study also investigates time-averaged flow 

influence on scalar transport. A computational model is 

developed, and flows under steady-state and time-averaged 

regimes are comparatively investigated. It is revealed that a 

steady-state flow will not resolve all features of an unsteady flow, 

particularly those that are temporally short-lived. Therefore for 

this purpose, a time-averaged flow-field would be a better 

representation of a characteristically unsteady flow. The time-

averaged flow-field is however shown to be inappropriate for 

deriving other flow variables such as wall shear stress, but may 

be used for transport purposes as a convective profile.  
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