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Abstract

In this paper, a scaling analysis using a simple three-region
structure was conducted for the unsteady natural convection
boundary layer (NCBL) of a homogeneous Newtonian fluid
with Pr> 1 adjacent to a vertical plate evenly heated with a
time-dependent sinusoidal temperature. A series of scalings
were developed for the thermal boundary thickness, the viscous
boundary thicknesses, the maximum vertical velocity within
the boundary layer, and the local and average Nusselt number
across the plate, which are the major parameters representing
the flow behavior, in terms of the governing parameters of the
flow, i.e.the Rayleigh number Ra, the Prandtl number Pr, and
the dimensionless natural frequencyfn of the time-dependent
sinusoidal temperature, at the start-up stage, at the transition
time scale which represents the ending of the start-up stage and
the beginning of the transitional stage of the boundary-layer de-
velopment, and at the quasi-steady stage.

Introduction

As a classic fluid mechanics problem, NCBL flow has been
widely studied. Earlier studies had focused on experimental and
analytical investigations of the steady behavior of the flow, in
particularly that on a heated semi-infinite vertical wall and in a
rectangular cavity with differentially heated sidewalls. More re-
cent studies have focused on the transient flow behavior. In par-
ticular, scaling analysis has proven to be a very effective tool to
reveal the transient behavior of such a flow since Patterson and
Imberger [1] made a pioneering scaling analysis of the tran-
sient NCBL flow in a two-dimensional rectangular cavity with
differentially heated sidewalls. This study has inspired many
subsequent studies to extend scaling analysis to many different
aspects of transient NCBLs under various configurations and
flow conditions. The readers are referred to our recent papers
(e.g.[2]) for a more detailed review of some of these studies.

Unsteady NCBLs on a vertical plate heated by a time-dependent
heat flux or temperature are found in many applications, such as
in the Trombe wall system of a passive solar house and in a solar
chimney for electricity generation. In the Trombe wall case, the
wall, which is usually painted in black or with a solar selective
coating, absorbs solar radiation and converts it into heat which
is then transported to the dwelling by the heated air via NCBL
flow in the channel formed by the glazing and the wall. A so-
lar chimney operates in a similar manner. For both cases, the
time-dependent solar radiation, which varies sinusoidally un-
der a clear sky condition (only in the first half of the sinusoidal
cycle), serves as the heat flux for the NCBL flows. Although
there have been numerous studies on NCBLs on a vertical plate
heated by a heat flux, the majority of these studies have been
on the cases where the applied heat flux is either uniformly

constant or spatially varied but not time dependent. Lin and
Armfield [3] recently carried out a scaling analysis to develop
scalings for the unsteady NCBL of a homogeneous Newtonian
fluid with Pr> 1 adjacent to a vertical plate evenly heated with
a time-varying sinusoidal heat flux, which were validated and
quantified by a series of direct numerical simulations. In the
current study, this scaling analysis is extended to the unsteady
NCBL of a homogeneous Newtonian fluid with Pr> 1 adjacent
to a vertical plate evenly heated with a time-dependent sinu-
soidal temperature, which, to our best knowledge, has not been
done so far, although its fundamental significance and practical
application importance.

Scaling Analysis

Under consideration is the unsteady NCBL of a homogeneous
Newtonian fluid with Pr> 1 adjacent to a vertical plate evenly
heated with a time-dependent sinusoidal temperature in the
form of

Tw(t) = Ta +Tw,msin(2π f t) (1)

wheret is time,Ta is the initial fluid temperature att = 0, Tw,m
and f are the amplitude and the natural frequency of the time-
dependent sinusoidal temperature applied to the plate, respec-
tively. The flow is assumed to be two-dimensional and the fluid
is initially at rest. The plate lies atX = 0 with the origin at
Y = 0 (X andY are the horizontal and vertical coordinates, re-
spectively), with the plate boundary conditions

U =V = 0, Tw(t) = Ta +Tw,msin(2π f t) atx = 0 forY > 0

whereTw,m and f are assumed to be constant for a specific time-
dependent temperature condition.

The governing equations of motion are the Navier-Stokes equa-
tions with the Boussinesq approximation for buoyancy, which
together with the temperature equation can be written in the fol-
lowing two-dimensional forms,

∂U
∂X

+
∂V
∂Y

= 0 (2)

∂U
∂t

+
∂(UU)

∂X
+

∂(VU)

∂Y
=−

1
ρ

∂P
∂X

+ν
(

∂2U

∂X2 +
∂2U

∂Y 2

)

(3)

∂V
∂t

+
∂(UV )

∂X
+

∂(VV )

∂Y
= −

1
ρ

∂P
∂Y

+ν
(

∂2V

∂X2 +
∂2V

∂Y 2

)

+gβ(T −Ta) (4)

∂T
∂t

+
∂(UT )

∂X
+

∂(V T )
∂Y

= κ
(

∂2T

∂X2 +
∂2T

∂Y 2

)

(5)



0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

Start-up Quasi-steady

δ T

τ

τs

Transitional

Figure 1. The three distinct stages in the boundary-layer development,
seen in the typical numerically simulated time series of the dimen-
sionless local thermal boundary-layer thicknessδT = ∆T /H at height
Y = 0.5H for the specific case Ra= 108, Pr= 7 and fn = 0.1, where
time τ is made dimensonless byH/V0, fn is the dimensionless natu-
ral frequency of the time-dependent flux applied to the plate,and τs

(= ts/(H/V0)) is the dimensionless transition time scale representing
the end of the start-up stage and the beginning of the transitional stage.

whereU andV are theX andY direction velocity components,
P is pressure,g is the acceleration due to gravity,β, ν andκ are
the thermal expansion coefficient, kinematic viscosity and ther-
mal diffusivity of the fluid at the temperatureTa, respectively.
Gravity acts in the negativeY−direction.

For the unsteady NCBL flow considered here, the major gov-
erning parameters are the Rayleigh number Ra and the Prandtl
number Pr, defined as

Ra=
gβ∆T0H3

νκ
, Pr=

ν
κ

(6)

where
∆T0 = T w −Ta (7)

andT w is the time-averaged temperature on the plate which is
calculated by

T w =
1

ttotal

∫ ttotal

0
[Ta +Tw,msin(2π f t)]dt =

2
π

Tw,m +Ta (8)

wherettotal is the total heating time of the time-dependent tem-
perature applied to the plate. In this paper, it is assumed that
2π f ttotal = π, i.e., f = 0.5/ttotal (hence only the first half, heat-
ing cycle is considered). Apparently, Ra defined above is the
time-averaged global Rayleigh number for the unsteady NCBL
over the duration of heating, calculated in terms ofTw,m by
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)
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The scaling analysis is carried out by examining in detail the
various balances in the governing equations ([1]) for unsteady
NCBL flows and by using the similar procedures by [3, 4, 5],
modified appropriately in the context of the time-dependent
temperature applied to the plate.

With the initiation of the flow, a vertical boundary layer will be
developed adjacent to the plate which will experience a start-
up stage dominated by one-dimensional conduction, followed
by a transitional stage during which traveling waves, associ-
ated with the leading edge effect, are present and a transition to
two-dimensional convection occurs, before eventually reaching
a quasi-steady stage, with the transition time scalets (τs is its

dimensionless form) separating the start-up stage and the transi-
tional stage. This is illustrated in figure1 where a typical numer-
ically simulated time series of the thermal boundary-layer thick-
ness∆T (δT = ∆T /H is its dimensionless form) is shown.∆T
is defined as the horizontal distance between the plate and the
location where the fluid temperature reaches 0.01[Tw(t)− Ta].
Similar behavior is also observed for the other parameters of in-
terest to this work,i.e.the maximum vertical velocity within the
boundary layer,Vm, the inner viscous boundary-layer thickness,
∆vi, and the local Nusselt number across the plate,Nuy.

Scalings at the Start-up Stage

The forcing for the vertical boundary layer is from conduction
of heat through the plate. The ratio of the unsteady term (∆T/t)
to the dominant convection term (V ∆T/H) in the temperature
equation (5) isO(H/Vt), where

∆T = Tw(t)−Ta = Tw,msin(2π f t) (10)

and for sufficiently small timet this is much larger than 1
(i.e.Vt ≪ H), so the initial balance is between the heat con-
ducted in through the plate (i.e.the termκ∆T/∆2

T ) and the un-
steady term, which leads to the following scaling for the thermal
boundary layer thickness∆T at the start-up stage,

∆T ∼ κ
1
2 t

1
2 (11)

Hence, a horizontal gradient in temperature exists from the plate
to a distance∆T in the ambient fluid.

The buoyancy forces resulting from this heating act to acceler-
ate the flow over the thickness∆T only. In this region, the ratio
of the inertial term to the viscous term in the vertical momen-
tum equation (4) isO[(V/t)/(νV/∆2

T )]∼ O(∆2
T /νt)∼ O(1/Pr)

as∆T ∼ κ
1
2 t

1
2 as shown in (11). This is much smaller than 1

for Pr≫ 1, so that the balance over∆T is between the viscous
term,ν∂2V/∂X2, and the buoyancy term,gβ∆T .

The peak velocityVm must occur within∆T . SupposeVm is at a
horizontal distance∆vi from the plate. Also for Pr> 1 there will
be a region of flow outside∆T where there is flow which is not
directly forced by buoyancy, but is the result of the viscous dif-
fusion of momentum. Suppose this is∆v from the wall. Hence
a three-region structure originally proposed by [5, 4], as repro-
duced in Fig. 2, can be depicted for natural convection boundary
layers of Pr> 1 fluids.

In regions I and II, the balance is between viscosity and buoy-
ancy, i.e.,

0∼ ν
∂2V

∂X2 +gβ∆T (12)

However, in region III the balance is between viscosity and in-
ertia, since there is no buoyancy there.

In region I, the balance (12) gives,
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In region II, the forcing is over the distance(∆T −∆vi), but the
gradient ofV is over(∆v −∆vi). The best way to look at this
is to integrate the vertical momentum equation over region II,
giving
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(

∂V
∂X

)∆T

∆vi

+gβ
∫ ∆T

∆vi
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Figure 2. The three-region structure of the unsteady NCBL adjacent to
the vertical plate for Pr> 1 fluids [4, 5]: (a) at the start-up stage and (b)
at the quasi-steady stage.

Since (∂V/∂X)∆vi = 0 (that is where the maximum is) and

approximating(∂V/∂X)∆T ∼ Vm/(∆v −∆vi) and
∫ ∆T

∆vi
∆T dx ∼

∆T (∆T −∆vi), this gives
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Hence,
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Matching this with (14) obtained above forVm gives
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so that
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In region III, as there is no buoyancy force, the flow is driven
solely by diffusion of momentum, meaning that the unsteady
term balances the viscous term, giving
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which is the scaling for∆v at the start-up stage. Hence, the
scaling (20) becomes
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This is the scaling for∆vi at the start-up stage.

So the scaling (14) forVm becomes
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Since∆T ∼ κ
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2 , with Eqs. (9) and (10), this leads to
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which is the scaling forVm at the start-up stage.

The local Nusselt number across the plate at heightY at the
start-up stage is then,
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which, with (7), (10), and (11), leads to
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This scaling shows that at the start-up stage, the local Nusselt
number is in fact independent of heightY and hence the average
Nusselt number over the whole plate at the start-up stage has the
same scaling as (27).

Scalings at the Transition Time Scale ts

The boundary layer will continue to grow until convection of
heat carried away by the flow balances the conduction of heat
transferred in from the plate, The start-up stage is then complete
and the transitional stage starts. At a heightY , this happens at
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which gives the following scaling for the transition time scalets
which represents the ending of the start-up stage and the begin-
ning of the transitional stage at heightY ,

ts ∼
H2(Y/H)1/2(1+Pr−

1
2 )

κRa
1
2 [sin(2π f ts)]1/2

(31)

The corresponding scaling for the maximum velocity scale at
heightY at the transition time scalets, from (25), is
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The scalings for the thermal boundary layer thickness, inner
viscous boundary layer thickness, and whole viscous boundary
layer thickness at heightY at ts, from (11), (23), and (22), are
respectively,
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The scaling for the local Nusselt number across the plate at
heightY at ts, from (27), is

Nuy,s ∼
Ra1/4

(Y/H)1/4

[sin(2π f ts)]5/4

(1+Pr−1/2)1/2
(36)

Hence, the scaling for the average Nusselt number over the
whole plate atts is
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1
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∫ H
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Scalings at the Quasi-steady Stage

The mechanisms governing the behavior of the boundary layer
during the transitional development stage become quite compli-
cated due to travelling waves caused by the leading edge effect,
and it is speculated that no simple scalings can be developed for
this stage. Subsequent to the passage of the leading edge waves
the boundary layer is at the quasi-steady stage. At any time in-
stantt, the convection of heat carried away by the flow again
balances the conduction of heat transferred in from the plate,
indicating that at a heightY the balance represented by (28) still
holds in the quasi-steady stage.

In the vertical momentum equation (4), over∆T , buoyancy bal-
ances viscosity. Hence, in region I, the balance represented by
(13) and the corresponding scaling forVm, i.e.(14), both apply
here as well. In region II, this buoyancy-viscosity balance again
leads to (15) to (19), which eventually lead to the same relation
(20) as developed in Section .

Using (23), the scaling (14) becomes,
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Combining scalings (28) and (38) gives,
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which, with (10) and (9), leads to the following scaling for the
thermal boundary-layer thickness at any timet in the quasi-
steady state,
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With (40), the scaling (38) leads to,
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which is the scaling for the maximum vertical velocity within
the boundary layer at any time in the quasi-steady state. The
scaling for the inner viscous boundary layer thickness at height
Y at any timet in the quasi-steady stage, from (23), is
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The scaling for the whole viscous boundary layer thickness at
heightY at any timet in the quasi-steady stage, from (22), is
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The scaling for the local Nusselt number at heightY at any time
t in the quasi-steady stage, from (27), is
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and the scaling for the average Nusselt number over the whole
plate at any timet in the quasi-steady stage becomes
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It should be noted that, although the scalings (40)–(45) at the
quasi-steady stage are in the same form as their respective coun-
terparts at the transition time scalets, i.e.(33), (32), (34)–(37),
these scalings apply for any timet in the quasi-steady stage,
whereas the scalings (32)–(37) are only valid atts.

Conclusions

In this paper, it was found that the transient and quasi-steady
flow behavior of the unsteady NCBL of a homogeneous Newto-
nian fluid with Pr> 1 adjacent to a vertical plate evenly heated
with a time-dependent sinusoidal temperature is controlled by
Ra, Pr, andfn of the sinusoidal temperature and is well repre-
sented by parameters such as the thermal boundary-layer thick-
ness, the viscous boundary-layer thickness, the maximum ver-
tical velocity within the boundary layer, and the local and aver-
age Nusselt number across the plate. Scalings were developed
for the different development stages of the flow,i.e.the start-
up stage, the transition time scale which represents the end of
the start-up stage and the beginning of the transitional stage of
the boundary-layer development, and the quasi-steady stage, by
using a simple three-region structure proposed by [4, 5]. All
these scalings are validated by direct numerical simulation re-
sults, which will be detailed in the presentation at the confer-
ence.
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