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Abstract 

Analytical models of the flow  passing through a porous actuator 
disc can be used to estimate the power that can be extracted by a 
wind or tidal turbine. However, the models that have been 
developed to date assume that the flow field is uniform upstream 
of the turbine. In practice this is not the case for both wind and 
tidal turbines, where a non-uniform sheared velocity profile is 
more likely. To help overcome this problem, in this paper we 
extend the traditional actuator disc models to incorporate non-
uniform upstream flow. Using the extended model we show that 
flow non-uniformity alters the power that can be removed by a 
disc in a confined flow because it alters the ‘effective blockage’ 
of the disc. Results from the model compare very well with 
numerical solution of the Euler equations and have potentially 
important implications for quantifying blockage effects 
experienced by wind turbines in tunnels and tidal turbines in tidal 
channels when the velocity profile is not uniform. 

Introduction  

Estimating the power that can be extracted by a wind or tidal 
turbine in uniform flow is complicated because the resistance 
offered by the turbine acts to divert flow around it. Modelling 
this flow diversion in its entirety requires analysis of flow 
structures across multiple scales, including the blade of the 
turbine, the diameter of the turbine and the length of the turbine 
wake. Recently computational models have been developed for 
single turbines which aim to model the flow across most scales 
(see, for example, [2]), however these computational models 
require further development to be useful in design of new 
turbines or arrays of turbines.  

A well-known approximation to circumvent the need to predict 
some of the complicated flow structure around an actual turbine 
is to replace the turbine with a porous actuator disc having the 
same diameter of the turbine and able to exert a uniform 
streamwise resistance to the flow (the resistance being related to 
the streamwise force associated with the turbine blades). This 
assumption avoids the need to resolve the flow structure at the 
blade/turbine scale and, more importantly, allows arguments of 
mass, energy and momentum to be used selectively to quantify 
the diversion of flow around the disc and estimate the power 
extracted by the disc (see, for example, [1]).  

For a single disc representing an isolated turbine in uniform flow, 
first introduced by Lanchester, Betz and Joukowsky [8], it can be 
shown that, because of flow diversion, at most only 16/27 times 
the upstream kinetic flux passing through an area equal to that of 
the disc can be extracted by the disc as useful power. In practice 
this limit (often referred to as the Betz limit) has proven to be a 
useful benchmark for the wind industry, whilst the combination 

of actuator disc theory with a blade element theory (which relates 
the disc resistance to forces on the turbine blades) has provided a 
valuable wind turbine design tool [1].  

Motivated by the success of the actuator disc assumption for 
modelling wind turbines, in recent years extensions have been 
made to model turbines in confined flows [5], rows of closely 
space turbines [6,7] and arrays of staggered or centred turbines 
[3]. Each of these extensions has been presented in the context of 
tidal stream turbines and has provided insight into optimum 
strategies to arrange turbines. However, in all cases the flow 
upstream of the turbine(s) has been assumed to be uniform. This 
assumption is violated in real flows, where a non-uniform 
sheared velocity profile is present in most scenarios for tidal 
turbines and wind turbines.  

The aim of this paper is to present a preliminary analytical model 
of a turbine with a non-uniform upstream flow. The resulting 
model is then explored and compared with numerical solutions of 
the Euler equations obtained using a spectral Discontinuous 
Galerkin Finite Element Method. Implications of the model are 
discussed.  

Actuator Disc Model 

To extend the traditional actuator disc model we start with the 
non-uniform velocity profile sketched in figure 1. This profile 
has the advantage of being simple and is equivalent to that 
considered previously by Draper and Nishino [3], but for a 
different application. The velocity profile in figure 1 is 
completely defined by the streamwise velocity ݑ, the width of the 
channel ܤ/ܣ (where ܣ is the cross-sectional area of the disc and 
 defines the blockage ratio equal to disc cross-sectional area ܤ
divided by channel cross-sectional area) and two additional 
parameters ݎ and ߶. In this paper we will assume that ߶ ൒ 0 (i.e. 
unidirectional flow). We will also assume that 1/ܤ ൒ ݎ ൒ 1, so 
that the flow passing through the disc is locally uniform. In this 
simple problem, letting ݎ →  recovers the classic uniform ܤ/1
confined flow problem analysed previously by [5]. 

Accounting for the non-uniform flow, the assumed flow field is 
defined by the curved dividing streamlines shown in figure 1. 
These streamlines separate the core flow through the turbine from 
the two bypass flow regions having upstream velocity ݑ and ߶ݑ, 
respectively. Within the different regions of the flow field the 
parameters ߙଶ, ߙସ, ߚସ and ߚହ represent multipliers on the average 
velocity. These regions coincide with stations situated at different 
streamwise locations to represent far upstream (location 1), far 
downstream where the pressure has equalised across the flow 
(location 4) and immediately either side of the disc (location 2 
and 3). The only assumption placed on the multipliers are that 
0 ൑ ଶߙ ൑ 1 and ߙସ ൑  .ଶߙ



 

Figure 1. Actuator disc in confined flow with an upstream piece-wise constant velocity profile defined by the parameters ݎ and ߶.  

If we assume that ݎ ,ܤ and ߶ are known, together with the 
velocity multiplier ߙସ (representing, essentially, the porosity of 
the disc) we can solve for the unknown velocity coefficients in 
the same way as [3] by applying arguments of continuity and 
conservation of energy and momentum assuming that the flow is 
inviscid and irrotational everywhere except on the dividing 
streamlines themselves.  

Conservation of mass across the entire flow field can be used 
initially to write:  
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Application of the Bernoulli equation along any streamline 
passing through the disc also leads to: 
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Similarly, application of the Bernoulli equation along streamlines 
in the flow bypassing the disc leads to: 
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and 
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The result in Equation (3) can now be combined with (2) to give: 
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where static equilibrium across the disc has been used to write 
ܶ ൌ ሺ݌ଶ െ  Finally, conservation of streamwise momentum .ܣଷሻ݌
leads to (after rearranging):  
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Combining (1), (2) and (3) with (5), equation (6) can be rewritten 
as 
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Equation (7) can be solved easily numerically using the 
prescribed inputs ߙସ, ݎ ,ܤ and ߶ and Equation (4).  

The power removed by the disc is then 
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where ߙଶ is calculated from (1) (or from (6) when ܤ ൌ 0) and ܥ௉ 
is a power coefficient.  

Functionally, we can now write ܥ௉ሺݎ, ߶, ,ܤ  ସሻ. However, forߙ
convenience we will replace the parameter ߙସ with a different 
coefficient, ݇, defined as a local thrust coefficient for the turbine 
so that: 
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ଶሻ/ߙଶ
ଶ, which can be easily determined 

numerically via iteration. Arguably ݇ gives a more physically 
appealing description of disc porosity. Adopting this change we  
can now write ܥ௉ሺݎ, ߶, ,ܤ ݇ሻ. 

For reference, in the limit ݎ →  it can be easily confirmed ܤ/1
that (7) drops back to the same equations presented by Garrett 
and Cummins [5] for a turbine in a uniform flow. In that special 
case the maximum power coefficient for a given blockage ratio 
occurs when ݇ ൌ 2ሺ1 ൅ ሻଷ/ሺ1ܤ െ  :ሻଶ and is given by [5]ܤ
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To explore the power coefficient in the case of a non-uniform 
flow, figure 2 presents the power coefficient computed as a 
function of disc resistance ݇, for a disc blockage of ܤ ൌ1/5 and 
three different velocity profiles. This figure shows clearly how 
the velocity profile can impact directly the power extracted by 
the porous disc. Essentially, when the bypass flow is slower 
(faster) than the flow which intercepts the disc, a lower (higher) 
pressure difference can be achieved across the disc in the 
streamwise direction and this reduces (increases) the power 
extracted by the disc.  

 

Figure 2. Power coefficient as a function of disc resistance for three 
different velocity profiles.  

 

Figure 3. Variation in maximum power coefficient with flow velocity 
parameter ݎ. 

 

Figure 4. Variation in maximum power coefficient with flow velocity 
parameter ߶. 

The result in figure 2 indicates that the power coefficient can be 
very sensitive to flow non-uniformity. To explore this sensitivity 
further figure 3 and figure 4 present the maximum power 
coefficient as a function of ݎ and ߶, respectively, for a disc with 
fixed blockage. From figure 3 it is evident that as the width of the 
central part of the velocity profile increases, the maximum power 
coefficient, ܥ௉,௠௔௫, increases (decreases) when the outer flow is 
slower (faster) than the central flow velocity. Figure 4 displays 
this same result a different way, and indicates that the peak 
coefficient varies monotonically with ߶. 

Interpretation of changes in maximum power coefficient 

An obvious first question is: does the power coefficient 
normalised in terms of the bulk velocity (i.e. cross-sectional 
average velocity of the upstream flow profile) rather than simply 
the velocity, ݑ, collapse the results given in figures 2, 3 and 4? 
Based on figure 3, the answer to this question is no. For instance, 
the peak coefficient for ߶ ൌ0.5 and 2 are different by a factor of 
~2 on figure 3. However, the ratio of the bulk velocity cubed for 
each of these examples is closer to 4. 

Given the inability of the bulk velocity to explain the results, an 
alternative and informative way to interpret them is to define an 
effective blockage ratio, which is the blockage ratio at which a 
uniform flow would give the same power coefficient as that for 
the non-uniform flow. This power coefficient is therefore 
calculated, noting (13), as: 

2/1

27

16
1 










P
eff C

B , (14) 

where the superscript implies non-uniform flow.  

For ܤ ൌ0.2, figure 5 presents contours of effective blockage as a 
function of the parameters ݎ and ߶. This figure illustrates some 
important limits. Firstly, for  ߶ ≫ 1 it can be seen that ܤ௘௙௙ →
 indicating that the fast outside flow now acts to essentially ,ݎ/1
confine the slower central flow in the same way as impermeable 
walls. Secondly, for ߶ ≪1 we have ܤ௘௙௙ → 0 irrespective of ݎ. 
This limit suggests that for ocean currents, for example, which 
may be representative of a small passage of fast flowing water 
surrounded by slower moving water, no blockage effects are 
realised due to the finite width of the current. Finally, for ߶ ൌ 1 
it can be seen that the effective blockage equals the actual 
blockage of 0.2, since then the flow is uniform. 

 

Figure 5. Contours of effective blockage ܤ௘௙௙ based on (14) for a turbine 
with ܤ ൌ 0.2.   

 



Continuously varying velocity profile 

The piecewise constant velocity profile is perhaps the simplest 
idealisation of a non-uniform flow. However, the solution 
presented above can be adapted easily to continuous velocity 
profiles. For example, if we assume the central part of the 
velocity retains a width ܣݎ and velocity ݑ, but we allow the 
velocity to reduce linearly to zero outside this width, then ݎ is the 
only parameter to define the profile and it can be shown that (1), 
(7) and (11) are still valid provided that (see [4]) ߶ ൌ0.5, 
ହߚ ൌ ߶/ሾߚସ െ ሺߚସ

ଶ െ 1ሻଵ/ଶሿ and ܣଷ is calculated as  
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Comparison to Numerical Solution of Euler Equations  

Figure 7 presents results from a numerical solution to the Euler 
equations using a discontinuous Galerkin Finite Element method 
(explained in more detail in [4]) for a disc having blockage 
ܤ ൌ 1/6	and ݇=2.06. Figure 7a represents symmetric non-
unfiorm flow, whilst figure 7b represents asymmetric non-
uniform flow. In both cases the flow profile is the same as that 
described in the previous subsection; uniform flow over a width 
 reducing linearly to zero outside this width. The actuator disc ,ܣݎ
theory presented in this paper is indifferent to these two profiles.  

Also shown in figure 7 are the power coefficients for the discs 
computed numerically. These results can be compared with the 
actuator disc theory presented in the previous subsection, which 
gives ܥ௉ ൌ 0.66. This analytical result is only 3% lower than the 
numerical values given in figure 7. For comparison, ignoring the 
non-uniformity in the flow, and applying the theory of [5] 
directly gives ܥ௉

௎ ൌ 0.77. This is 14% higher than that in figure 
7. The theory presented herein therefore appears to explain the 
results in figure 7 much better than previous work.   

Finally, it is interesting to note in figure 7 that asymmetry has 
little effect on the results. Flow asymmetry may become more 
relevant where viscous effects are more dominant, but for the 
inviscid limit considered here it is of limited influence. 

Conclusions 

In this paper we have shown that the classical actuator disc model 
can be applied to problems involving non-uniform upstream 
flow. In confined flow, the effect of flow non-uniformity has 
been explored for the case of an inviscid shear flow, where the 

shear does not intercept the disc directly. The more general case 
without this restriction is considered in [4].  

The present analysis indicates that a non-uniform flow can affect 
the power extracted by the disc. In particular, the disc power 
coefficient decreases below (increases above) that expected in 
uniform flow if the turbine is moved into a relatively high (low) 
velocity region of the flow. These results cannot be explained in 
terms of the bulk flow velocity, but they may be interpreted well 
as a change in the effective blockage of the disc.  

The results have implications for existing theoretical models of 
arrangements of turbines in shallow flows (e.g. [9]), which 
presently ignore flow non-uniformity. They are also important for 
consistent interpretation of blockage effects for wind turbines in 
wind tunnels when the flow is non-uniform. 
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(a) ܥ௉ ൌ0.680 

 

 

(b) ܥ௉ ൌ0.677 
Figure 7. (a) Streamwise velocity contours for symmetric non-uniform flow; (b) Streamwise velocity contours for asymmetric non-uniform flow. Axes are 
normalised by disc length. Contours represent velocity normalised by upstream velocity ݎ .ݑ ൌ4, ܤ ൌ1/6. 


