
19th Australasian Fluid Mechanics Conference
Melbourne, Australia
8-11 December 2014

Stochastic Mode Representation of a Zero-Net-Mass-Flux Jet Forced
Adverse Pressure Gradient Flow

V. Kitsios1,2, N. A. Buchmann1, C. Atkinson1 and J. Soria1,3

1Laboratory For Turbulence Research in Aerospace and Combustion,
Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, AUSTRALIA.

2Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research,
107-121 Station St, Aspendale 3195, AUSTRALIA.

3Department of Aeronautical Engineering, King Abdulaziz University, Jeddah 21589, KINGDOM OF SAUDI ARABIA.

Abstract

For the first time modes representative of the linear dynamics
(Koopman) and associated nonlinear error (stochastic covari-
ance) are calculated for a periodically forced adverse pressure
gradient flow. The Koopman and stochastic covariance modes
are determined from the solution of two separate eigenvalue
problems, both constructed from a series of time resolved ob-
servations. The specific flow configuration is a NACA-0015
aerofoil with a periodic zero-net-mass-flux slot jet forcing at
the leading edge. The aerofoil is at an angle of attack of 18◦

with a chord based Reynolds number of 3× 104. Modes are
calculated from high repetition rate particle image velocime-
try measurements. Modes constructed from fluctuations about
the time averaged baseflow are dominated by modes of tem-
poral and spatial scale similar to that of the forcing. Modes
constructed from fluctuations about the phase averaged base-
flow describe interactions between the forcing and the natural
variability, and oscillations in the leading edge shear layer.

Introduction

Many engineering systems operate in the presence of adverse
pressure gradients, including: aircraft wings, wind turbine
blades, and any form of turbomachinery. Flow separation in any
of these scenarios can lead to drastic reductions in performance
and at worst catastrophic consequences. The study of separa-
tion will enable us to further understand the pertinent boundary
layer physical processes, and to develop practical passiveand/or
active flow control devices.

The specific configuration studied within is a leading edge sep-
arated NACA 0015 aerofoil at an angle of attack of 18◦, with a
chord based Reynolds number ofRe≡ u∞c/ν = 3×104, where
ν is the kinematic viscosity,c the chord length, andu∞ the
freestream velocity. All parameters and results presentedwithin
are non-dimensionalised byc andu∞. The system is periodi-
cally forced by a two-dimensional zero-net-mass-flux (ZNMF)
slot jet at the leading edge of frequencyf0 = 1.22 and a mo-
mentum blowing coefficient ofcµ = u2

j,rmsh = 0.0014, where
u j,rms is the root-mean-square jet velocity andh is the jet slot
width. This jet actively controls the flow, which delays separa-
tion and enhances the lift force. The experiments are conducted
in a horizontal water tunnel using high repetition rate particle
image velocimetry (HR-PIV) to measure the time-resolved two-
component, two-dimensional velocity fields at the mid-span.
In the absence of forcing, laminar flow separation occurs at
the leading edge as shown in figure 1(a). In the presence of
the above specified forcing a time-averaged reattachment ofthe
flow is achieved, as illustrated in figure 1(b). A detailed descrip-
tion of the experiments is presented in [1, 10], and a large eddy
simulation of the unforced baseflow is discussed in [6].

The focus of the present paper is to study the stability prop-
erties of the controlled aerofoil flow in the temporally period-
ically forced environment. Using a proper orthogonal decom-
position (POD) projection method outlined within [5, 2], we
construct a stochastic linear model representing the evolution
of the discretely sampled (truncated) system, from the time-
resolved HR-PIV measurements of [1], with a time between
velocity field snapshots of∆t = 0.0067. We present the eigen-
vectors of the linear operator (Koopman modes) representing
the linear dynamics, and also the eigenvectors of the covari-
ance matrix of the stochastic force representing the fluctuations
not governed by the linear operator. The general mathematical
approach for computing the modes is outlined in the follow-
ing section. Koopman and stochastic covariance modes are cal-
culated for fluctuations about both the time averaged baseflow
and the phase averaged baseflow. Physical interpretations made
from the spatial and temporal characteristics of these modes are
provided.

(a)

(b)

Figure 1: Dye flow visualisation [10] of a NACA-0015 aerofoil
at α = 18◦ andRe= 3×104: (a) unforced case; (b) ZNMF jet
forcing at the leading edge with a forcing frequency off0 =1.22
and momentum blowing coefficient ofcµ = 0.0014.



Koopman Mode Theory

Koopman modes [7] were introduced to geophysical fluid me-
chanics in [4] (termed principal oscillation patterns), with a de-
tailed review presented in [11]. Further detailed discussion on
the Koopman operator in the field of engineering fluid mechan-
ics is presented in [8, 9]. Here we follow the derivation of [3].
The approach uses observations of a general nonlinear system
to construct a linear operator that best represents the evolution
of the system, with the eigenvectors of the linear operator and
error covariance matrix the modes of interest. However, thelin-
ear operator becomes prohibitively large for data sets withmany
spatial points. In the present study we alleviate this problem by
projecting the eigenvalue problems onto a set of POD modes as
outlined in [5]. The following discussion, however, will focus
on the Koopman mode theory.

To facilitate the discussion we define the state vectoru(t) that
contains the streamwise (u) and vertical (v) velocity compo-
nents at all points in space at timet. It is decomposed into a
potentially time varying baseflowU(0)(t) and the fluctuations
about this baseflowu′(t). Results are presented forU(0)(t)
equal to both the time and phase averaged baseflow.

In the Koopman mode decomposition a non-linear system is ap-
proximated by

u̇′(t) = Mu ′(t)+ f(t) , (1)

whereM is a time invariant linear operator, andf(t) represents
the nonlinear interactions not governed byM . The estimate of
M that minimises the variance off(t) is given by Gauss’ theo-
rem of least squares to be

M =
1
∆t

[〈u′(t +∆t)u′T(t)〉〈u′(t)u′T(t)〉−1− I ] , (2)

where the angular brackets denote time averaging, and we have
approximated the state time derivative as

u̇′(t)≈
u′(t +∆t)−u′(t)

∆t
, (3)

with ∆t the time between discretely sampled snapshots. The
Koopman modes are given by the solution of the eigenvalue
problem

−iΩ( j)U( j) = MU ( j) , (4)

where for each modej > 0, the complex right eigenvector is

U( j), and the complex eigenvalueΩ( j) ≡ Ω( j)
r + iΩ( j)

i . The

imaginary componentΩ( j)
i is the growth rate, and the real com-

ponent is related to the frequencyf ( j) by Ω( j)
r = 2π f ( j). For

temporally growing modesΩ( j)
i > 0, decaying modesΩ( j)

i < 0,

and marginally stable modesΩ( j)
i = 0. The left eigenvectors

(adjoint modes), form a biorthogonal set with the right eigen-
vectors (direct modes). We use the adjoint modes to determine
the contribution of each direct mode to the individual snapshots,
from which we determine the amount of fluctuation energy rep-
resented by each mode (E( j)).

In addition for a system in statistical steady state with
(∂/∂t)〈u′(t)u′T(t)〉 = 0, one can determine the stochastic co-
variance off(t), denoted byF, which is the variance of the
fluctuations not governed by the deterministic linear operator
M . The varianceF is determined from (1) post-multiplied by
u′T(t) added tou′(t) multiplied by the transpose of (1), all time
averaged, such that

F ≡ 〈f(t)u′T(t)〉+ 〈u′(t)fT(t)〉

= −M 〈u′(t)u′T(t)〉−〈u′(t)u′T(t)〉MT . (5)

One can now determineF using the previously calculatedM .
The eigensolution of the real symmetric matrixF is given by

σ( j)U( j)
S = FU( j)

S , (6)

where for each modej > 0, the real eigenvalueσ( j) represents

the fluctuation energy in each mode, andU( j)
S is the real eigen-

vector capturing any spatial correlation in the error field.The
modes are in order of decreasing energy. One can consider this
eigenvalue problem as generating a POD of the fluctuations not
governed by the linear operatorM .

Modes Representative of the Linearised Dynamics

We now present the temporal and spatial properties of the lin-
earised dynamics for fluctuations about both the time and phase
averaged baseflows. The time averaged baseflow of the snap-
shots is calculated and subtracted away from each snapshot,
from which the linear operatorM is calculated using (2). The
phase used for the phase averaged based flow is that of the peri-
odic forcing 1/ f0 = 0.82. This time dependent baseflow is cal-
culated and subtracted away from each snapshot, from which
the linear operatorM is again calculated using (2).

The eigenvalues ofM for both baseflow cases are illustrated
in figure 2(a). The cross symbols represent the time averaged
case, and the filled circular symbols represent the phase aver-

aged case. In both casesΩ( j)
i ≤ 0 for all j . This means that

the fluctuations are either decaying or marginally stable, which
one would expect for a system in a statistical steady state. For
systems such as these more insight can be gained by looking at
the energy (E( j)) associated with the frequency (f ( j)) of each
Koopman mode.

We represent the energy in each mode by a pre-multiplied
(E( j) f ( j) versusf ( j)) log-linear plot in figure 2(b), as this most
clearly highlights the peaks for a given frequency. For the time
averaged baseflow case, the frequency of the three most ener-
getic Koopman modes line up with the forcing frequencyf0,
its first harmonic 2f0, and second harmonic 3f0, illustrated in
figure 2(b) by the dashed vertical lines. The realv component
of the Koopman mode with a frequency off0 is illustrated in
figure 2(c), exhibiting a train of vortex structures. The imag-
inary v component has structures of similar scale, but shifted
downstream such that its vortex structures are out of phase with
the real component. The oscillatory behaviour of the forced
dynamics of frequencyf0 are reconstructed by linear combina-
tions of the real and imaginary components of this mode. The
real v component of the Koopman mode with a frequency of
2 f0 is illustrated in figure 2(d), also exhibiting a train of vortex
structures, but more densely packed and smaller in size. Like-
wise the imaginaryv component is shifted downstream out of
phase. The mode with a frequency of 3f0 contains even smaller
structures. In summary, the most energetic modes representing
the fluctuations about the time averaged baseflow capture the
external forcing applied to the system.

The phase averaged baseflow includes the dynamics with fre-
quencies that are the same as the forcingf0 and the harmonics
of the forcing. This means the fluctuations about this baseflow
exclude the dominant dynamics discussed above. This is clear
from figure 2(b) with the energy at frequenciesf0, 2f0 and 3f0
orders of magnitude less than that observed in the previous case.
The remaining modes reflect the interactions between the forc-
ing and the natural variability. In the unforced system the fre-
quency of the dominant natural shedding mode isfn = 0.64 [6].
Nonlinear interaction between the forcing of frequencyf0, and
the natural shedding of frequencyfn, would produce fluctua-
tions of frequenciesf0− fn = 0.58 and f0+ fn = 1.86. In fact
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Figure 2: Deterministic dynamics about the time averaged and phase averaged baseflow. (a) Koopman eigenvalues. (b) Koopman
energy versus frequency with forcing frequencyf0 and harmonics 2f0 and 3f0 labelled. Realv component of Koopman modes with
contour levels from−0.005 (blue) to 0.005 (red) for the time averaged based flow with (c)f = f0; and (d) f = 2 f0; and for the phase
averaged based flow with (e)f = fac− fn; and (f) f = fac+ fn.

two of the most energetic modes about the phase averaged mean
have these frequencies, which are both circled in figure 2(b).
The realv component for the mode of frequencyf0 − fn is il-
lustrated in figure 2(e), which illustrates structures larger than
those previously illustrated, consistent with it having a longer
time scale (1/( f0− fn)). Likewise the realv component for the
mode with a frequencyf0+ fn is illustrated in figure 2(f), and
has a more complex vortex structure.

From figure 2(b) it is clear from the encircled modes, that there
are also coincident modes calculated about the time averaged
baseflow. The respective modes also have near identical spatial
forms. This indicates that the subtraction of the time averaged
baseflow is sufficient to identify modes associated with the ex-
ternal forcing, and also those associated with the interactions
between the external forcing and the dynamics of the naturalun-
forced system. The advantage of subtracting the phase averaged
baseflow will become evident after considering the stochastic
covariance below.

Modes Representative of the Stochastic Covariance

For the fluctuations about both the time and phase averaged
baseflows, the eigenvalues of the stochastic covariance matrix
F are illustrated in figure 3(a). It is clear that the energyσ( j) of
the time averaged case is larger than that of the phase averaged
case for at least the first 30 modes, after whichσ( j) of the two
cases converge. This indicates that a linear stochastic model
based on the fluctuations about the time averaged baseflow, has
greater uncertainty than a model based on the fluctuations about
the phase averaged baseflow.

This issue becomes more evident after inspecting the associ-
ated mode shapes. The most energetic mode (mode 1) for the
time averaged baseflow is illustrated by thev velocity compo-
nent in figure 3(b), and for the next most energetic mode (mode

2) in figure 3(c). Mode 2 has similar spatial structure and scale
to mode 1 but shifted out of phase downstream. These modes
have very similar spatial properties to the Koopman mode of
frequency 2f0 illustrated in figure 2(d). This indicates that the
most significant error in the linear model of the evolution ofthe
fluctuations, is that based on the representation of scales resem-
bling the first harmonic. As the mode number increases, and the
energy in each mode decreases, the size of the vortex structures
in the associated stochastic covariance modes also decreases.

The stochastic covariance modes calculated from the fluctua-
tions about the phase averaged baseflow have minimal resem-
blance to the dominant Koopman modes and the external forc-
ing. Mode 1 is illustrated in figure 3(d), and is representative of
the incoherent fluctuations distributed throughout the domain.
Modes 2 contains larger yet still incoherent structures. Modes
3 through to 6 contain coherent structures representative of the
small scale fluctuations centred about the leading edge shear
layer, with mode 5 illustrated in figure 3(e).

Note the Koopman modes have both a coherent spatial form
given by the eigenvectorsU( j), and a coherent temporal form
given by the frequency and temporal growth rate embedded in
the complex eigenvalueΩ( j). The stochastic covariance modes,
however, only have a coherent spatial form given by the eigen-

vectorsU( j)
S . We know the temporal variance of each of the

modes fromσ( j), from which one could build a stochastic re-
duced order model of the system using the approach outlined in
[12].

Conclusions

Modes representative of the linear dynamics and stochasticco-
variance have been calculated from HR-PIV measurements of
a NACA-0015 aerofoil flow forced at the leading edge by a
ZNMF jet. Modes have been presented describing the fluctu-
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Figure 3: Stochastic dynamics about the time averaged and phase averaged baseflow. (a) Energy versus mode number. Realv compo-
nent of stochastic covariance modes with contour levels from−0.005 (blue) to 0.005 (red) for the time averaged baseflow: (b) mode 1;
and (c) mode 2. For the phase averaged baseflow: (d) mode 1; and(e) mode 5;

ations about both the time and phase averaged baseflow, where
the phase was taken to be that of the jet forcing. Stochastic
linear models constructed from fluctuations about the time av-
eraged baseflow are dominated by modes with temporal and
spatial scale similar to that of the forcing and its harmonics.
Models developed from fluctuations about the phase averaged
baseflow yield dominant Koopman modes describing the in-
teractions between the forcing and the natural variability, and
dominant stochastic covariance modes representing small scale
fluctuations in the leading edge shear layer.
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