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Abstract

In this work, transient growth in a laminar separation bubble
in a low–to–moderate Reynolds number airfoil flow is inves-
tigated. Optimal two and three–dimensional initial perturba-
tions are computed for the flow over a NACA 0012 airfoil at
angle–of–attack α = 5◦ with chord based Re = 5 × 104. At
this Reynolds number, the pressure surface boundary layer re-
mains attached over the length of the airfoil while the suction
surface boundary layer undergoes separation before becoming
two–dimensionally unstable leading to periodic vortex shed-
ding and reattachment. Transient growth analysis shows that
this flow supports large energy growth for both two and three–
dimensional perturbations. Optimal growth values and flow
topologies show that two–dimensional mechanisms are the pri-
mary energy growth mechanisms. Upstream of vortex shed-
ding, the primary growth mechanism appears to be the Orr
mechanism while a separate mechanism appears to drive fur-
ther energy growth downstream in the base flow shed vorticity.

Introduction

Low to moderate Reynolds number airfoil flows have become
increasingly important due to recent interest and advances in
unmanned and micro air vehicle design. In these flows, lami-
nar separation bubbles (LSBs) are commonly formed through
a process of boundary layer separation, transition to turbulence
and reattachment. The performance of an airfoil in such a flow
can critically depend on the characteristics of an LSB and hence
the mechanics of the transition process.

Recent numerical studies have begun to explore this process in
airfoil type geometries. At very low Reynolds number, The-
ofilis et al.[9] conducted a BiGlobal stability analysis of the
steady LSB in flow over a NACA 0012 airfoil and identified
a wake instability as the leading instability mode. Kitsios et
al.[6] and Abdessemed et al.[1] identified this mode, as well
as a three–dimensional stationary mode in flows over a NACA
0015 airfoil and through a periodic array of low–pressure tur-
bine blades respectively. Secondary instability of the unsteady
LSBs formed by the onset of vortex shedding due to primary
wake instability was also considered in [1]. Weak secondary
instability was identified almost immediately after the onset of
primary instability at Re = 905. The growth rate of the sec-
ondary instability was not found to grow significantly with Re,
and was shown to be associated with the periodic boundary con-
dition raising questions about it’s physical relevance.

Steady LSBs near the onset of primary instability were also
found to support transient growth of order 105 in [1]. Sharma et
al.[8] examined transient growth in the unsteady flow regime
for the same configuration and found similar results. Two–
dimensional perturbations were found to be dominant over long
time horizons while three–dimensional perturbations of short
spanwise wavelength were dominant over short time intervals.

At a higher Reynolds number Jones et al.[4] used DNS and clas-

Figure 1. Spectral element mesh used for base flow and stability com-
putations.

sical linear stability to analyze the LSB in flow over a NACA
0012 airfoil at 5 degrees angle–of–attack and Re = 5 × 104.
Though no absolute instability was detected, a global instabil-
ity mechanism was identified in DNS simulations using volume
forcing to directly perturb the boundary layer. The instabil-
ity mechanism involved upstream advection of perturbations in
the braid region between shed vortices, relying on strong re-
verse flow and perturbation growth to self–sustain. In a sepa-
rate work, Jones et al.[5] also investigated acoustic receptivity
in the same flow and identified an acoustic feedback loop in-
volving the trailing edge as a source and the leading edge as a
receptivity site. They suggest that this global instability mech-
anism may play a role in determining the frequency of vortex
shedding associated with the LSB.

To examine the effect of vortical perturbations, Zaki et al.[10]
reported on DNS simulations of flow over a compressor blade
with and without the presence of free–stream turbulence. By
varying the intensity of free–stream turbulence introduced at
the inflow, different transition mechanisms were observed in the
LSB on the suction surface of the blade while the LSB on the
pressure side was completely eliminated by transition in the at-
tached boundary layer.

It is clear from the above studies that transition in LSBs in air-
foil flows is a complex process, is sensitive to various factors
and can occur in a variety of ways. In this work, the role of tran-
sient growth mechanisms in an airfoil LSB are investigated at
Re = 5×104. In contrast to previous studies we apply a global
stability approach at a Reynolds number sufficient to separate
LSB dynamics from wake dynamics.

Formulation

The objective of transient growth analysis is to compute linear
perturbations maximizing energy growth over a finite time in-
terval τ. The formulation of the optimal initial perturbation for
transient growth is well established but a brief description is
provided here. The interested reader is directed to [2] for more
detailed discussions.

In this work, we consider the evolution of infinitesimal per-
turbations uuu = (u(x,y,z, t),v(x,y,z, t),w(x,y,z, t))T to a two–
dimensional base flow UUU = (U(x,y, t),V (x,y, t),0)T . The base
flow is a time–periodic solution of the incompressible Navier–



Stokes equations computed a priori while the perturbation is
governed by the linearized Navier–Stokes (LNS) equations:

∂tuuu =−UUU ·∇uuu− (∇UUU)T ·uuu−∇p+Re−1
∇

2uuu, (1a)

∇ ·uuu = 0. (1b)

The perturbation energy growth to maximize over a finite time
interval is written:

G(τ) =
(uuu(τ) ,uuu(τ))
(uuu(0) ,uuu(0))

, (2)

where the inner product is the volume integral over the flow
domain Ω given by:

(uuu,uuu) =
∫

Ω

uuu ·uuudV. (3)

Through (1b), the pressure term in (1a) can be eliminated so the
LNS equations can be expressed compactly as:

∂tuuu−L(uuu) = 0, (4)

where L is a linear operator. We then introduce the state tran-
sition operator, A(τ) = exp(Lt), to evolve an arbitrary initial
perturbation uuu(0) to time τ:

uuu(τ) = A(τ)uuu(0). (5)

It can be shown that substitution of (5) into (2) leads to:

G(τ) =
(uuu(0) ,A∗(τ)A(τ)uuu(0))

(uuu(0) ,uuu(0))
, (6)

where A∗(τ) is the adjoint evolution operator of A whose action
evolves an adjoint variable, uuu∗τ , from time τ to 0 (see [2]). The
optimal growth problem can then be formally stated as:

G(τ) = max
uuu(0)

(uuu(0) ,A∗(τ)A(τ)uuu(0))
(uuu(0) ,uuu(0))

, (7)

where G(τ) is given by the largest eigenvalue of the operator
A∗A while the optimal initial perturbation is given by the cor-
responding eigenvector.

Methodology

The airfoil considered here is a NACA 0012 at an angle–of–
attack α = 5◦ with chord based Re = 5× 104. Length scales
are non-dimensionalized by the airfoil chord, c, while veloci-
ties are normalized by the free–stream velocity, UUU∞. To com-
pute the two–dimensional base flow, DNS of the incompress-
ible Navier–Stokes equations were carried out with a spectral
element-Fourier method detailed elsewhere [3]. For the base
flow, the streamwise and cross–stream directions, x and y, are
discretized using spectral elements while the Fourier decompo-
sition in span, z, is not used due to the two–dimensional nature
of the flow. The flow domain is 5.5c×5.6c in the x and y direc-
tions respectively and a close-up of the mesh near the airfoil is
shown in figure 1.

To solve the optimal growth problem, a Krylov/Arnoldi method
is used to iteratively find dominant eigenvalues/eigenvectors of
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Figure 2. Variation of mean friction coefficient profile with interpolat-
ing polynomial order. Top curve is C f for suction side of airfoil, bottom
curve is −C f for pressure side.

A∗A by repeated application of the operator to a random ini-
tial perturbation. Rather than directly computing the action of
A∗A on an initial perturbation by matrix–vector multiplication,
the action of A∗A is computed by timestepping the LNS equa-
tions and their adjoint. This is achieved by evolving an initial
perturbation, uuu(0), to time τ via the LNS equations, and then
evolving the terminal condition, uuu(τ), to time 0 via the adjoint
LNS equations. The numerics used for these computations are
the same as those used for the base flow, with modifications to
solve the LNS or adjoint LNS equations instead of the incom-
pressible Navier–Stokes equations.

The Fourier decomposition in span means the three–
dimensional perturbations are of the form:

uuu(x,y,z, t) = uuu(x,y, t)exp(iβz) , (8)

where superposition allows each Fourier mode to be analysed
separately. In this work the response of the base flow is anal-
ysed for two–dimensional perturbations with infinite spanwise
wavelength, as well as three–dimensional perturbations with
spanwise wavelengths from 0.05c to 10.0c. The time intervals
chosen for the analysis are τ = 0.25T , 0.5T and 1.0T where
T is the base flow period. These intervals are chosen to avoid
perturbation dynamics associated with the wake.

Results

Convergence of the base flow has been determined by com-
paring mean C f profiles computed with different interpolating
polynomial orders as shown in figure 2. While a polynomial or-
der of 9 appears sufficient for convergence, the results presented
here are computed with 11th order polynomials for maximum
accuracy. The mean C f profiles shown in figure 2 also show
the separation and reattachment behaviour of the base flow. On
the pressure surface of the airfoil, boundary layer attachment
is maintained for the length of the airfoil while on the suction
surface, a primary separation bubble is seen from x = 0.21c to
x = 0.61c and a short secondary separation bubble is observed
from x = 0.48c to x = 0.51c.

Examination of instantaneous flow data shows the complicated
dynamics of this flow. The flow is periodic with a temporal
frequency of 1.27. Snapshots of the base flow vorticity field
shown in figure 3 suggest that the separated shear layer becomes
unstable to a Kelvin–Helmholtz type instability leading to shear
layer roll–up and vortex shedding. The shed vortices are then
observed to periodically merge as seen in figures 3c and 3d.

Results of the two–dimensional transient growth analysis show



Figure 3. Snapshots of base flow vorticity at points in the base flow
limit cycle. Phase points are (a) t = 0T ; (b) t = 0.25T ; (c) t = 0.5T and
(d) t = 0.75T where T is the base flow period. 100 equispaced contour
levels are used between ωz =±100.

significant amplification of two–dimensional perturbations for
all time horizons. Figure 4 shows the variation of optimal
growth with time interval for the three cases considered. For
the time intervals considered, the flow shows a monotonic in-
crease in energy growth with increases in time interval. For the
largest time interval, the growth is around six orders of magni-
tude larger than the growth observed for the smallest interval.

Vorticity contours for a typical optimal initial condition are
shown in 5a. The optimal initial condition is characterized by
fine scale upstream tilted vortices in the boundary layer up-
stream of the primary separation point. This suggests that the
Orr mechanism is a primary mechanism of energy growth. The
evolution of the optimal initial condition is shown in figures 5a
to 5d where tilting and amplification of these structures by the
mean shear is evident. At the final time, the perturbation flow
structures appear fully entrained in the base flow shed vorticity.
Comparison of figures 5c and 5d suggests that some perturba-
tion structures are either damped in the vortex shedding region
or merge as they interact with the shed vortex. The implication
here is that in addition to the Orr mechanism, another mecha-
nism in the shed vorticity may be driving large transient growth.

When comparing the perturbation snapshots with the base flow
snapshots, it is evident that the perturbations end up in the shed
vortex resulting from vortex merging, while no perturbation am-
plitude is visible in the unmerged vortices upstream and down-
stream of this. This suggests that optimal growth in this flow
may be sensitive to variation in base flow phase.

For the short time horizon case, the optimal initial condition
shown in figure 6 is structurally similar except for a downstream
shift of the tilted spanwise vortices and the addition of signif-
icant initial perturbation amplitude in the base flow shed vor-
ticity. This suggests that two areas of perturbation growth are
present since over a short time horizon a perturbation amplified
upstream may not reach the downstream region to be further
amplified. As a result a more equal weighting of initial pertur-
bation amplitude would be expected.

Results of the three–dimensional transient growth analysis show
that the flow is still able to support strong transient growth, but
two–dimensional perturbations excite larger flow response for
all time horizons considered. Figure 7 shows a representative
result for the variation of optimal energy growth with perturba-
tion spanwise wavelength. For this case, long wavelength per-
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Figure 4. Optimal growth of two–dimensional perturbations for the
three time horizons considered here.

Figure 5. Evolution of optimal two–dimensional initial perturbation for
τ = 1.0T visualized with contours of spanwise vorticity. 100 contour
levels are used between ωz =±10% of maximum.

Figure 6. Optimal two–dimensional initial perturbation for τ = 0.25T
visualized with contours of spanwise vorticity. 100 contour levels are
used between ωz =±10% of maximum.



 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 0  1  2  3  4  5  6  7  8  9  10

G
(τ

)

λz

3D
2D

Figure 7. Optimal growth as a function of perturbation spanwise wave-
length and comparison with optimal growth for two–dimensional per-
turbations. Time horizon is τ = 1.0T .

Figure 8. Optimal three–dimensional initial perturbations for (a) τ =
1.0T , λz = 0.1c; (b) τ= 1.0T , λz = 10.0c; and (c) τ= 0.25T , λz = 0.1c.
Contours are spanwise vorticity with 100 levels between ωz =±10% of
maximum.

turbations are seen to support larger transient growth with the
optimal growth appearing to very slowly approach the growth
for two–dimensional perturbations.

At wavelengths below 1.0c, the optimal growth is observed to
drop off sharply with a brief recovery at λz = 0.1. The sharp
decay is perhaps due to sharper spanwise gradients in the low
wavelength Fourier modes leading to enhanced viscous decay,
while the recovery at λz = 0.1 may be due to the onset of a
separate instability mechanism. In a study of transient growth
in flat plate boundary layers, Monokroussos et al.[7] found that
long spanwise wavelengths promoted the Orr mechanism while
short wavelengths led to perturbation growth via lift–up.

Optimal initial conditions computed here suggest that, in this
case, the dynamics are largely the same as the two–dimensional
case. The initial conditions are still dominated by upstream
tilted vortices as shown in figures 8a to 8c. Evolution of the
initial conditions also shows similar flow development to the
two–dimensional case. A possible explanation for the absence
of lift–up is that the Reynolds number here is too low to support
the fine scale structures found to support lift–up in [7].

Optimal initial conditions for short and long wavelength pertur-
bations are shown in 8a and 8b respectively. For long wave-
lengths, the optimal initial condition is localized close to the
leading edge while the short wavelength initial perturbation is
longer and more closely localized to the separation point. This
may suggest that the higher viscous decay rates associated with
short wavelength perturbations reduces the effectiveness of per-

turbation growth through the Orr mechanism in the leading
edge.

Comparing figures 8a and 8c suggests that the effect of reducing
the optimization time is to push the optimal initial perturbation
slightly downstream. This is similar to what was observed in
the two–dimensional case except that no significant amplitude
is observed in the base flow shed vorticity. This is possibly due
to the perturbation growth mechanisms in the shed vorticity be-
ing more sensitive to the additional viscous damping associated
with the shorter wavelengths.

Conclusions

In this work, the response of two–dimensional periodic flow
over a NACA 0012 airfoil at Re = 5× 104 and α = 5◦ to two
and three–dimensional optimal initial perturbations is analysed.
The flow was found to support strong transient growth in both
cases with two–dimensional growth mechanisms appearing to
be dominant. The Orr mechanism in the boundary layer up-
stream of the vortex shedding region of the base flow was ob-
served to be a primary contributor to perturbation energy growth
while base flow shed vorticity also appeared to be a site of sig-
nificant energy amplification.
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