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Abstract

The flow structure and heat transfer in inclined two-dimensional
differentially heated square cavities is investigated via numer-
ical simulation. It is shown that the basic flow structure is
changed when the cavity is inclined such that the heated wall is
below the cooled wall, with attached jet/plumes forming adja-
cent to the adiabatic walls, rather than diffuse intrusions as for
the non-inclined cavity. At a specific angle of inclination, the
flow undergoes a bifurcation so that the fully developed flow is
unsteady and single mode, with a further increase in inclination
leading to multi-modal and then broad banded chaotic flow. The
Nusselt number is obtained and plotted against the inclination
angle to determine the effect of inclination on the total cavity
heat transfer.

Introduction

The differentially heated square cavity, with heated and cooled
opposing vertical walls, and adiabatic upper and lower bound-
aries, has been widely studied, providing a canonical represen-
tation of a large range of buoyancy driven flows. The flow
consists of natural convection boundary layers forming on the
heated/cooled walls, entraining fluid from, and discharging to,
diffuse intrusions in the stratified interior. The overall flow
acts to transport heat from the heated to the cooled wall, with
the details of the flow depending on the temperature differ-
ential across the cavity, typically characterised by a Rayleigh
(or Grashof) number, and by the Prandtl number of the fluid
[4, 6, 7, 8, 11, 13]. Inclined natural convection cavity flow has
received less attention, although a number of studies have in-
vestigated the effect of inclination angle on flow structure and
bulk heat transfer [5, 10, 14].

In the present study the flow structure, bifurcation and transi-
tion, and total heat transfer of inclined natural convection cavity
flow is investigated in detail via numerical simulations. As the
cavity is inclined, so that the heated wall is below the cooled
wall, the structure of the flow changes with the boundary layers
formed on the heated and cooled sides discharging into attached
jet/plumes adjacent to the adiabatic boundaries. This structure
allows travelling waves to circulate continuously around the
cavity, providing a feedback mechanism to augment the convec-
tive instability of the natural convection boundary layers, lead-
ing to an absolute instability of the total flow, with associated
bifurcation, at a specific inclination angle. The total heat trans-
fer, characterised by the average Nusselt number on the heated
wall, plotted against the inclination angle, shows a complex re-
lationship, with the Nusselt number initially increasing, before
exhibiting an overall decline as would be expected.

Numerical Method

The flow and temperature fields are obtained by solving the
Navier–Stokes equations expressed in two dimensional incom-
pressible form with the Oberbeck–Boussinesq approximation
for buoyancy, together with the temperature transport equation,

which are as follows,

ut +uux + vuy =−px +
Pr

Ra1/2 (uxx +uyy)+Pr sinθT, (1)

vt +uvx + vvy =−py +
Pr

Ra1/2 (vxx + vyy)+Pr cosθT, (2)

ux + vy = 0, (3)

Tt +uTx + vTy =
1

Ra1/2
(Txx +Tyy). (4)

u and v are the velocity components in the x and y directions
respectively, with x the direction normal to the heated wall
and y the direction parallel to the heated wall, t is the time,
T the temperature and p the pressure. Quantities are non-
dimensionalised based on a length scale H, the length of the
sides in the square cavity, temperature difference ∆T , half the
temperature difference between the heated and cooled cavity
sides, and characteristic velocity U = (gβ∆T H)1/2/Pr1/2, with
β, κ and ν the coefficient of thermal expansion, thermal diffusiv-
ity and kinematic viscosity respectively, and g the acceleration
due to gravity. The control parameters are the Rayleigh number
Ra = (gβ∆T H3)/(νκ) and the Prandtl number, Pr = ν/κ. θ is
the angle of inclination, that is the degree of rotation in an anti-
clockwise sense from the standard differentially heated cavity
with vertical side-walls.

The equations are solved in the square domain 0 ≤ x ≤ 1.0,0 ≤
y ≤ 1.0, with the velocity set to zero on all boundaries. The
temperature is set to 1.0 on the x = 0 boundary and -1.0 on the
x = 1 boundary, with the other two boundaries adiabatic.

A second-order fractional step finite-volume Navier–Stokes
solver defined on a non-staggered rectangular grid is used. Time
integration is accomplished using an Adams–Bashforth scheme
for the nonlinear terms and Crank–Nicolson for the viscous and
diffusion terms. All spatial terms are discretised using centred
second-order differences. Continuity is enforced and pressure
obtained using a pressure correction equation. The basic code
has been widely used for the simulation of natural convection
cavity flow [1, 2, 3, 9, 12].

The domain is discretised with a stretched rectangular grid to
allow full resolution of the small scale near wall features. The
standard grid has minimum grid spacings in each direction of
∆x = ∆y = 0.001, adjacent to the boundaries, with a maximum
stretching factor of 1.013 moving away from the boundaries,
giving a maximum grid spacing of ∆x = ∆y = 0.00256 in the
interior of the cavity. The total number of cells is 445×445. A
time-step of ∆t = 0.00125 is used with the standard grid. Time
step and grid dependency tests have been carried out with addi-
tional solutions obtained with half the grid size, stretching rate
and time step, giving a total mesh of 919× 919 cells, and one
third the grid size, stretching rate and time step, giving a total



mesh of 1331×1331 cells. Point values of temperature and ve-
locity, time averaged for the unsteady flows, were observed to
vary by less than 1% over these three grids. For the unsteady
flows the frequency of the single mode flow was also observed
to vary by less than 1% over the three grids.

Results

All results have been obtained at Rayleigh number Ra= 1×108

and Prandtl number Pr = 7.0, with a range of inclination an-
gles. Figure 1 contains the fully developed stream function and
temperature contours, respectively, at inclination angle θ = 0◦,
which is the standard non-inclined differentially heated square
cavity flow. Natural convection boundary layers have formed
adjacent to the heated (left side) and cooled (right side) bound-
aries, rising on the heated side and falling on the cooled side.
These boundary layers discharge heated and cooled fluid into
diffuse intrusions adjacent to the upper and lower adiabatic
boundaries, which travel across the cavity to be entrained by
the far side natural convection boundary layer. The temperature
contours show the relatively narrow rising and falling natural
convection boundary layers, with the interior fluid fully strati-
fied. This flow is steady at full development.

Figure 1: Stream function (left) and temperature (right) con-
tours for θ = 0◦.

The θ = 18◦ results, in figure 2, clearly show the effect of the
inclination angle on the flow. Natural convection boundary lay-
ers have again developed adjacent to the heated left side and
cooled right side walls, but the buoyancy of the discharged fluid,
combined with the inclination of the adiabatic upper and lower
boundaries, means that the boundary layers now discharge into
attached jet/plumes adjacent to the adiabatic boundaries. The
attached jet/plumes are narrower and have a higher velocity than
the diffuse intrusions observed in the θ = 0◦ flow. The attached
jet/plume flow is entrained by the far side boundary layers. The
temperature contours again show the relatively narrow rising
and falling natural convection boundary layers, and show that
the interior of the cavity is again stratified. The θ = 18◦ flow is
also steady at full development.

Figure 3 contains the temperature and stream function contours
for θ = 54◦. In this case the fully developed flow is unsteady
with a complex and irregular structure. The stream function
contours show a general cavity scale circulation with much
thicker boundary layers than those observed in the lower in-
clination angle cases. The temperature contours show relatively
thin thermal boundary layers on the heated and cooled walls,
but now with plumes forming and being shed into the cavity in-
terior. The temperature in the interior of the cavity no longer
displays the regular stratification that was characteristic of the
lower inclination angles, indicating that the fluid is now well
mixed.

Time series of the temperature at location x = 0.004, y = 0.5,
that is at the half height location and immediately interior to
the heated wall, are shown in figure 4 for inclination angle

Figure 2: Stream function (left) and temperature (right) con-
tours for θ = 18◦.

Figure 3: Stream function (left) and temperature (right) con-
tours for θ = 54◦.

θ = 37.35◦. The figure shows the start-up temperature time se-
ries in the main graph, together with the fully developed longer
time scale time series in the two insets. At full development
the time series is displaying sustained single mode oscillatory
behaviour. As noted above the flows at lower inclination an-
gles were steady at full development, with θ = 36.9◦ the largest
inclination angle tested that is steady at full development (not
shown). It is therefore apparent that a critical value of θ for
transition to fully developed unsteady flow must lie between in-
clination angles θ = 36.9◦ and θ = 37.35◦.

The average Nusselt number, Nu, on the hot wall is plotted
against the inclination angle in figure 5, where Nu is obtained as
the integral of the negative of the normal temperature gradient
over the heated wall. The Nusselt number is seen to initially in-
crease with inclination angle up to a peak at θ ∼ 15◦. With fur-
ther increase in the inclination angle Nu reduces until θ ∼ 45◦,
where it shows an abrupt increase, from Nu = 70.3 at θ ∼ 45◦

to Nu = 72 at θ ∼ 49◦. Nu then reduces until a third peak oc-
curs, with Nu increasing over θ ∼ 65◦ to θ ∼ 67◦. The lowest
value of the Nusselt number is obtained at the inclination angle
θ = 90◦, when the heated and cooled walls are horizontal.

As the cavity is inclined the heat transfer mechanism varies
from pure natural convection boundary layer flow, at θ = 0◦

to pure Rayleigh Benard convection, θ = 90◦. As the cavity is
inclined, the buoyancy driving force for the natural convection
boundary layers will reduce, as seen in equation (2), where the
buoyancy term varies with cos(θ). The overall reduction in Nu
observed, from figure 5, is associated with this cos(θ) reduction
in the driving force for the natural convection boundary layers.
Based on the known Nu ∼ Ra1/4 scaling for the non-inclined
cavity; [13], the cos(θ) variation in the bouyancy force would
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Figure 4: Time series of temperature adjacent to the heated wall
for θ = 37.35◦
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Figure 5: Nusselt number variation

be expected to lead to a scaling for the Nusselt number of,

Nu ∼ cos(θ)1/4.

This scaling is plotted as Scaling 1 in figure 5, and is seen to
capture the overall reduction in Nusselt number, but does not
capture the initial increase, the two subsequent peaks, or the
reduced rate of deacrease as θ approches 90◦.

The sudden increase in Nu at θ ∼ 45◦ is associated with the
transition of the natural convection boundary layers to fully
chaotic and broad-banded unsteady flow, subsequent to the ini-
tal single mode transition described above. The increase at
θ ∼ 67◦ is most likely associated with the onset of the Rayleigh
Benard convection. Additionally the reduced rate of decrease
as θ approches 90◦ is a result of the Rayleigh Benard convec-
tion, without which the Nusselt number would be equal to 0.0
at θ = 90◦, as for the cos(θ) scaling.

The initial increase in the Nusselt number, up to the peak at
θ ∼ 15◦, is believed to be a result of the interaction between
the natural convection boundary layers and the stratification. As
can be seen in figure 1, the interior of the cavity is stratified with
the temperature varying from approximately the cold wall tem-
perature at the bottom boundary to the hot wall temperature at
the top boundary. As a result the temperature difference across

the boundary layer adjacent to the heated wall will reduce from
a maximum value at its lower end, to a lesser value at its upper
end, and the converse for the cooled wall. In the inclined cavity
the interior is still stratifed, as seen in figure 2, with the vari-
ation now extending over the vertical distance from the lower
left corner of the cavity to the upper right corner. This means
that the temperature variation across the boundary layer adja-
cent to the heated wall is increased, as it is effectively located
in a lower, that is cooler, part of the stratification, and similarly
for the cooled wall. By assuming that the temperature stratifica-
tion is linear in the vertical direction, it is possible to develop a
scaling approximation for this increase in boundary layer tem-
perature variation with inclination angle. Combining it with the
scaling for the variation in buoyancy forcing, given above, gives
a further modified scaling for the Nusselt number,

Nu ∼
[(

1− 1
2(sin(θ)+ cos(θ))

)
cos(θ)

]1/4
.

This scaling is plotted as Scaling 2 in figure 5. As can be seen
this modified scaling provides a good representation of the ini-
tial increase in the Nusselt number, and subsequent reduction.
It does not predict the peak at θ ∼ 49◦, or the subsequent peak
at θ ∼ 67◦ and increasing influence of the Rayleigh Benard as
the inclination angle reduces further.

Conclusions

Two-dimensional numerical solutions have been obtained for
natural convection flow in inclined square cavities with differ-
entially heated and cooled opposing walls, with the other walls
adiabatic. With the heated wall on the left and the cooled wall
on the right the cavity is inclined in an anti-clockwise direction
so that the heated wall is then below the cooled wall. All results
were obtained at Rayleigh number Ra = 1× 108 and Prandtl
number Pr = 7.0.

The inclined cavity, even at small angles of inclination, is seen
to have a significantly different flow structure to that of the non-
inclined cavity. Referring to the flow adjacent to the heated
wall only, the standard, non-inclined, cavity, has a heated natu-
ral convection boundary layer that entrains fluid over most of its
lower half and discharges into a diffuse intrusion over most of
its upper half. The fluid in the diffuse intrusion travels horizon-
tally across the cavity to be entrained by the far wall boundary
layer. In the inclined cavity the boundary layer entrains fluid
over a smaller region of its lower half, and now discharges into
an attached wall jet/plume, immediately beneath the adiabatic
upper boundary. The discharged fluid travels across the cavity
as an attached jet/plume, to be entrained by the boundary layer
on the far wall. The temperature field of the inclined cavities for
the smaller inclination angles is similar to that of the standard,
non-inclined, cavity, with the interior of the cavity fully strati-
fied and narrow thermal boundary boundary layers adjacent to
the heated and cooled walls.

At a critical angle of inclination the inclined cavity flow un-
dergoes a bifurcation to a single mode unsteady flow. This un-
steady flow is comprised of a series of waves circulating contin-
uously around the periphery of the cavity, and travelling in the
same direction as the flow, that is up the heated wall, from left to
right across the cavity adjacent to the upper adiabatic wall, and
down the cooled wall, from right to left across the cavity adja-
cent to the lower adiabatic wall. The transition to unsteady flow
is a result of both the natural convection boundary layers and
the attached jet/plumes being able to sustain travelling waves.
Although the attached jet/plumes are stable, with the travelling
waves decaying as they transit across the cavity, at a sufficient
inclination angle the decay in the plumes is balanced by the am-



plification in the natural convection boundary layers leading to
the observed transition.

As the inclination is increased past the critical angle the flow
transits to multi-modal unsteady flow and finally to a broad-
banded and chaotic regime. At the higher inclination angles
Rayleigh Benard effects dominate, with plumes being generated
on the heated and cooled boundaries penetrating the interior of
the cavity. These plumes carry their local momentum with them
leading to a cavity scale flow and fully mixed interior.

The average Nusselt number on the heated wall is also seen to
vary with inclination angle. As the cavity is inclined the Nus-
selt number initially increases, peaking at an inclination angle
of θ∼ 15◦, before reducing with further inclination. Two subse-
quent peaks are observed in the Nusselt number as the cavity is
further inclined, at θ ∼ 49◦, and θ ∼ 67◦. The overall decrease
in Nusselt number is a result of the reduced buoyancy forcing
in the flow direction on the heated and cooled walls, however
the initial increase is believed to be a result of the interaction of
the boundary layers and the stratification of the fluid within the
cavity, which produces an increase in the local temperature vari-
ation across the boundary layers for small angles of inclination.
A Nusselt number scaling, including this effect, has been shown
to provide a good represenation of this behaviour. The subse-
quent peaks are believed to be associated with the transition to
broad-banded and chaotic unsteady flow in the boundary lay-
ers, and to the initiation of Rayleigh Benard convection, which
dominates for large inclination angle.
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