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Abstract 

This study focuses on the marginal stability of internally heated 
natural convection flow due to the absorption of incoming 
radiation in a parallelepiped cavity. The study is motivated by 
possible limnological applications where natural convection is 
known to have a significant impact on transport and mixing 
phenomena. The absorption of incoming radiation by a water 
body follows Beer's law, and any residual radiation reaching the 
bottom is absorbed by the bottom and re-emitted as a boundary 
flux. A potentially unstable bottom thermal boundary layer forms 
below a layer of stable thermal stratification, which exponentially 
decays from the water surface. The thermal structures evolve 
with time, and hence the pattern formation and critical conditions 
of the convective instability vary with time. A frozen-time model 
is employed in the present study and the base flow solution is 
assumed to be quasi-static for the evolution of perturbation. 
Despite a large body of literature available for the classical 
Rayleigh-Benard convection, the stability analysis on internally 
heated convection within a confined domain is very limited. The 
purpose of the present study is to investigate the dependence of 
three-dimensional pattern formation and critical conditions on the 
aspect ratio of the cavity and the water depth, and their time 
evolutions.  

Introduction  

Understanding mixing and transport mechanisms helps monitor 
water quality changes in water resources. Thermal forcing is one 
of the main driving factors that promotes mixing and plays an 
important role on changes in water quality within water bodies, 
such as lakes and reservoirs. Adams & Wells [1], Monismith et 
al. [2], and Macintyre & Melack [3] have shown that induced 
natural convection significantly impacts the water quality of the 
aforementioned water resources. 

The present study focuses on the natural convection induced by 
absorption of solar radiation. During the day, solar radiation 
penetrates into water body and the intensity of the radiation 
decays due to absorption according to Beer’s law: 
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where h is water depth, η is a bulk attenuation coefficient of 
water and I0 is the radiation intensity at the water surface (h=0). 
The absorption of incoming radiation produces a thermally stably 
stratified layer. Any residual radiation at the bottom is assumed 
to be absorbed by the bed and forms a bottom heat flux which is 
a potential source of Rayleigh-Benard type instability. Thus, 
there are two competing thermal layers: a stable surface layer due 
to the direct absorption of solar radiation and a potentially 
unstable bottom layer resulting from the residual heat flux at the 
bed. This leads to the formation of a nonlinear temperature 
profile, which, along with the free surface condition considered 
here, differentiates the present problem from the convectional 
Rayleigh-Benard problem. 

Stability of this type of flow has been studied for an infinite 
horizontal fluid layer by Farrow and Patterson [4] and for a 
laterally confined fluid layer with horizontal through-flow by 
Hattori et. al. [5]. The aim of this study is to extend the previous 
studies to consider the effects of insulating sidewalls in a three 
dimensional domain.  

The linear stability of the Rayleigh-Benard (RB) problem in a 
three-dimensional cavity has been studied extensively. Davis [6] 
investigated the stability of the fluid in a rectangular box heated 
from below for the case of conductive walls in 1967 while 
assuming two-dimensional finite rolls, in which the two nonzero 
velocity components depends on all three spatial variables. The 
critical Rayleigh number was obtained for different aspect ratios, 
and it was concluded that finite rolls with their axes 
perpendicular to a larger side are the preferred mode of 
convection. Catton [7, 8] investigated the same problem, also 
assuming the formation of finite rolls, and pointed out that Davis 
violated Weierstrass theorem in the Galerkin method. Catton, 
however, confirmed the above finding by Davis for both 
conductive and insulating sidewalls.  

Mukutmoni & Yang [9] evaluated the critical Rayleigh number 
based on a three-dimensional numerical simulation of the flow in 
a cavity with insulating sidewalls. Mizushima & Matsuda [10] 
considered all three velocity components in their linear stability 
analysis and evaluated the critical Rayleigh number for the onset 
of instability in a cubic cavity with conductive sidewalls. 
Mizushima & Nakamura [11]  evaluated the critical Rayleigh 
number for a parallelepiped cavity with insulating sidewalls in 
2003 and obtained a three-dimensional disturbance patterns at the 
onset of instability.  

The objectives of this paper are to evaluate the critical Rayleigh 
number for the onset of three-dimensional instability induced by 
the absorption of solar radiation in a parallelepiped cavity, to 
obtain disturbance patterns, and to investigate their dependencies 
on the aspect ratio of the cavity, water depth and time.  

Problem Formulation 

The geometry of the problem is defined in figure 1. The co-
ordinate origin is at the centroid of the parallelepiped cavity. 
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Figure 1. Parallelepiped cavity. The dimensions in the x and y directions 
are Lx and Ly, respectively while the dimension in the z direction is h. 

 

Assuming constant water properties at ambient temperature with 
the Boussinesq approximation, the governing equations are 
written as follows:  
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where u*, v* and w* are the velocity components in x, y and z 
directions respectively; T* is the temperature; p* is the pressure; 
∇*2 is the Laplacian operator. The density, kinematic viscosity, 
thermal diffusivity, gravitational acceleration and thermal 
expansion coefficient are ρ0, υ, κ, g, γ, respectively. The source 
term in the energy equation represents the direct absorption of 
solar radiation according to Beer’s law. 

The boundary conditions on the sidewalls are expressed as: 
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The top boundary is a stress-free surface and is assumed to be 
insulating: 
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The bottom boundary is a rigid wall, and the residual radiation at 
the bottom is assumed to be absorbed and re-emitted as a 
boundary heat flux, the following boundary conditions are 
applied at the bottom [4]: 
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Normalization is carried out using the following scales: the 
length scales are Lx, Ly, and η-1 in the x, y and z direction, 
respectively; the velocity scales are κ/Lx, κ/Ly and κη in the x, y, 
and z direction, respectively; the time scale is (κη2)-1; the 
temperature scale is I0/(ρ0Cpκη); and the pressure scale is 
γgI0/(Cpκη2). The Laplacian operator is normalized by η2, hence, 
the dimensionless Laplacian operator is written as: 
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where α = Lxη and β = Lyη. Ra and Pr are the Rayleigh number 
and the Prandtl number, defined respectively as: 

.

42
0

0

κ
υ

ηκρ
γ
υ

=

=

Pr 

 
pC

Ig
Ra ,

                                                            
(7) 

In order to simplify the numerical calculation, the solenoidal 
velocity field u͞ is introduced using two scalar functions ψ1* and 
ψ2* [12]: 

,jψiψu *2*1* ** 
×+×= ∇∇                                                (8) 

where ͞i and j͞  are the unit vectors in the x and y directions 
respectively. 

The base flow is governed by a one-dimensional conduction 
equation, and the base temperature is given as [4]:  
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where the value of the normalized water depth (ηh) determines 
the relative strength of a stable surface layer over a potentially 
unstable bottom layer. For shallow water depth (ηh<1), the 
penetration depth of solar radiation is greater than the water 
depth, which results in the formation of potentially unstable 
thermal layer across the full depth. On the other hand, for a deep 
water depth (ηh>1), a substantial amount of the radiation is 
directly absorbed by the water body, which leads to the formation 
of a stably stratified surface layer [4, 5]. 

Based on the frozen-time assumption, the perturbation 
components are expanded as follows:  
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where S is the growth rate of the perturbation and 𝜃 is the 
temperature perturbation. Consequently, the linearised 
perturbation equations are obtained as:  
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The boundary conditions for the perturbation components are: 
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Equations (11) and (12) at S=0 (marginal stability) form an 
eigenvalue problem for Ra and the corresponding eigenfunctions, 
i.e., ψ1, ψ2, 𝜃. It is clear that the critical value of Ra (Rac) is 
independent of the fluid type, specified by Pr, at the marginal 
stability; however, it depends on α, β, hη, and t. It is worth 
mentioning that the classical RB problem has a linear 
temperature profile and symmetrical boundary conditions, and 
therefore the Galerkin method is appropriate due to the simplicity 
of trial functions, which is not the case in the present study, as 
discussed in [5]. Hence, the finite difference method with a 
second-order discretisation scheme on a uniform mesh is 
employed. The critical Ra and eigenfunctions are obtained for 
given values of α, β, hη, and t. 

Numerical Results 

The perturbation equations (11) are the same as those for the 
conventional RB problem. In order to validate the computational 
code, the boundary conditions and the base temperature profile 
are modified for the RB convection in a cubic cavity with 
conductive sidewalls. The critical Rayleigh number for the onset 
of thermal convection is calculated for different mesh sizes.  It 
has been confirmed that the critical Rayleigh number Rac 
converges to the value of 6798 reported in Mizushima and 
Matsuda (1997) using 25 computational nodes in each direction.  

In the following we provide some preliminary results obtained 
using a relatively coarse mesh (25 computational nodes in each 
direction) in a square cavity. It should be noted that the number 
of the computational nodes is sufficient to resolve the bottom 
boundary layer for t > 0.01.  

The effect of the aspect ratio on the critical Rayleigh number is 
illustrated in figure 2 for hη=1.0 and t=0.05. As the aspect ratios, 
α and β, increase, the value of the critical Rayleigh number 
reduces and converges to the value for a horizontally unconfined 
fluid layer, which is 1.26E+4 for the corresponding case [4]. The 
asymptotic convergence of the critical Rayleigh number with the 
increasing lateral extent has also been shown in [5]. As widely 
reported for conventional Rayleigh-Benard convection, e.g. [6], 
and also shown in [5], reducing the lateral extent of the flow 
domain stabilises the flow, therefore the critical Rayleigh number 
increases. The stabilising effect of the lateral confinement is 
explained in [6] as follows; decreasing the size of the box 
dissipates the potential energy due to an increase in viscous 
effects.  

The three-dimensional results for t=0.01, α=β=2, and hη=1.25 are 
shown in figure 3. The cross section of the three-dimensional 
results is plotted in figure 4((d)-(f)). 

As shown in figures 4 ((a)-(c)), 4 ((d)-(f)), and 5 ((a)-(c)) for 
hη=1.25 and t=0.01, with increasing α and β the number of rolls 
increases, which is consistent with [5], so that the number of 
growing plumes increases. 

It is also evident from the results in figures 5((a)-(c)) and 5((d)-
(f)) that for α=β=4.0 and t=0.01, the number of rolls reduces as 

the values of hη decreases, which is again consistent with the 
results of the previous studies [4, 5]. 

 
 Figure 2. The critical Rayleigh number versus different value for α and β 
at hη=1.0 and t=0.05  

 

Figure 3. Three-dimensional pattern of ψ1, and 𝜃 at the critical point 
(Ra=Rac), t=0.01, α=β=2.0, and hη=1.25  

 

 

 
Figure 4. Isocontours of ψ1(at x=0), ψ2 (at y=0) and 𝜃 (at x=0) at the 
critical state (Ra=Rac), hη=1.25 and t=0.01: i) α=β=1.0 ((a)-(c)); ii) 
α=β=2.0 ((d)-(f))  

Comparing the results shown in figure 5((a)-(c)) and figure 6((a)-
(c)), for α=β=4.0 and hη=1.25 at two different times, it is clear 
that the number of rolls reduces as time increases, which 

(a) (b) 

(b) 
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(c) 

(d) 

(e) 

(f) 



confirms the results of the previous studies [4, 5]. As time 
increases, the bottom thermal boundary layer grows and as a 
consequence, the temperature pattern shown in figure 6(a) 
extends further compared to the pattern shown in figure 5(a). 

 

 

 
Figure 5. Isocontours of ψ1(at x=0), ψ2 (at y=0) and 𝜃 (at x=0) at the 
critical point (Ra=Rac), t=0.01 and α=β=4.0: i) hη=1.25 ((a)-(c)) ; ii) 
hη=0.75 ((d)-(f))   

 
Figure 6. Isocontours of ψ1(at x=0), ψ2 (at y=0) and 𝜃 (at x=0) at the 
critical point (Ra=Rac), t=0.05, α=β=4.0, and hη=1.25  

Conclusion 

The aim of this paper is to investigate the marginal stability of 
convection induced by solar radiation in a parallelepiped cavity 
with insulating sidewalls. All the three velocity components are 
taken into account in the perturbation equations. 

The results showed that at a fixed hη and t, as the aspect ratio (α 
and β) increases, the fluid is destabilised and therefore Rac 
reduces. In addition, the increase of α and β results in an 
increasing number of rolls, which corresponds to an increase in 
the number of observed plumes. Further, by decreasing hη while 

keeping the other parameters (α, β, t) constant, the number of 
rolls reduces. It is also evident that for a fixed set of α, β, and hη, 
the number of rolls reduces with time. The future study will focus 
on the impact of unequal aspect ratios on critical conditions, 
three-dimensional pattern formation, and their time evolutions for 
various water depths in a parallelepiped cavity.  
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