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Fluid-Structure Interaction of a Cylinder Rolling Down an Incline under Gravity
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CNRS/Universités Aix-Marseille,
49, rue Frédéric Joliot-Curie, B.P. 146, F-13384 Marseille Cedex 13, France

Abstract

The flow characteristics and fluid forces experienced by a body
rolling down an inclined plane under gravity are examined
through numerical modelling. This problem has been studied
for a wide range of Reynolds numbers, inclination angles and
density ratios. Two cases are considered: the first is a reference
case of a cylinder rolling on a horizontal wall at a constant ve-
locity, and the second consists of the cylinder rolling down an
incline with a velocity that varies with the time-varying forces
it experiences. The time-dependent motion of the body and the
flow field, and their relationship to the drag, lift and torque were
analysed to better understand of the governing physical mecha-
nisms, and the relationship to the constant speed case.

Introduction

We investigate the problem of a viscous incompressible flow
past a circular cylinder rolling along a solid surface. This prob-
lem has relevance to a number of important physical applica-
tions, including biological flows such as cell-wall interactions,
and two-phase flows for which particle interactions near bound-
aries are not well-understood.

Studies by Taneda [8] showed that positioning a stationary
cylinder close to a wall acts to stabilize the wake. Indeed, prox-
imity to a wall is able to alter the flow through the suppression
of vortex shedding when the wall distance is less than a criti-
cal value [3]. For gaps greater than this critical value, the flow
approaches that past a cylinder in free stream. Nishino et al.
[4], suggested that the nearby wall can have an effect similar
to placing a splitter plate in the wake. They proposed that the
wall limits the growth of disturbances that result in an abso-
lute instability and the onset of the characteristic Bénard-von
Kármán shedding. Rather than through an absolute instability,
they observed that the wake is better characterised as convec-
tively unstable as the cylinder approaches a wall.

Recent work by Stewart et al. [6, 7] examined the wakes of cir-
cular cylinders and spheres rolling along a wall at a constant
speed, showing a multitude of different wake states exist as the
Reynolds number was increased. The wall, of course, changes
the nature of the wake relative to the situation when the body is
placed in free stream. In particular, as discussed above, the ab-
solute instability responsible for Bénard-von Kármán shedding
is suppressed, and the natural wake centreline symmetry is re-
moved, leading to quite different flow dynamics and transitions.

For the work reported in this paper, the body (a cylinder) rolls
along the wall under the influence of gravity. At low Reynolds
number, a steady wake develops, so that the final state is the
body rolling along at a constant terminal velocity. As the

Reynolds number (or inclination angle) is increased, however,
the wake eventually becomes unsteady. For bodies close to
neutral buoyancy, the fluctuating forces associated with the un-
steady wake mean that the final kinematic state is not a constant
terminal velocity. This study examines this flow problem in
more detail.

Description of the Problem and Methodology

Consider a cylinder moving in the intuitive sense of forward
rolling (α=ωR/U = 1, where ω is the angular velocity, U is the
centre of mass speed and R is the cylinder radius, as defined by
[7]) along a plane wall through a quiescent fluid. The problem
setup is shown in figure 1.

Figure 1: Problem setup and parameter definition. This also
shows the forces acting and the alignment of the axes. See text
for details.

In terms of computational modelling, in order to simplify the
analysis, the frame of reference is attached to the centre of the
cylinder: this is equivalent to the fluid and wall moving past the
fixed body. The motion of the cylinder - and thus the velocity of
the fluid and the wall - may be fixed at a constant value or free
to vary with the different problem parameters.

As part of this study, two cases were considered: the first is
the reference case of a cylinder, submerged in a fluid, rolling
at a fixed velocity (referred to as the “fixed rolling case”) along
a horizontal wall, and the second is that of a cylinder rolling
along an inclined wall under gravity with no restrictions on the
body’s velocity (referred to as the “free rolling case”). For both
sets of simulations, wide ranges of values were considered for
the Reynolds number, the gravity (g) or inclination angle of the
wall (α), through the parameter gsinα, and the ratio of the body
density to the density of the fluid β. These parameters can be
combined into two governing non-dimensional parameters: a
generalised Reynolds number, Re f , and the density ratio, β, as
discussed below. This investigation brings a further understand-
ing of the importance of each parameter and its influence on the



behaviour of the fluid and the cylinder.

The model requires a coupling between the equations that de-
scribe, on the one hand, the motion of the fluid and on the other
hand, the motion of the cylinder. The rotation of the cylinder
changes the velocities on the boundary which in return induces
flow in the fluid, and the fluid influences the angular velocity of
the cylinder by exerting forces and torques upon it. The gov-
erning equations are the law of motion for the cylinder, the vis-
cous incompressible Navier–Stokes equations and the continu-
ity equation for the fluid flow (equations (1), (2) and (3) below).
The relation between the movement of the cylinder and the flow
of the surrounding fluid is therefore established through the ve-
locity of the cylinder as follows:
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where uf(x,y,z, t) = (u,v,w) and uc(x,y,z, t) = (uc,0,0) are the
velocities of the fluid and the cylinder respectively, ρ f ,ρc their
densities, α the slope of the wall, g the gravitational accelera-
tion, D the drag force per unit span (pressure plus viscous com-
ponents) and T the viscous torque per unit span.

Non-Dimensionalisation of the Equations

The physical variables were non-dimensionalised as follows.
The length scale is provided by cylinder radius R which can
be combined with combinations of the other controlling param-
eters (g, α, ρc and ρ f ) to define velocity and time scalings:
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pressure is then scaled by ρ f V 2
f where ∆ρ = ρc−ρ f .

With these definitions, the non-dimensional form of the Navier–
Stokes equation (3) is:
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where the Reynolds number is defined as Re f =
RVf

ν
. The ac-

celeration equation (1) takes on the following form:
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where β = ρc
ρ f

is the ratio of the body density to the density of
the fluid, CD and CT are the drag force and torque coefficients.

For the fixed rolling case, the speed (U) of the body is pre-
scribed and the Navier-Stokes scaling is standard with the
Reynolds number defined using the fixed velocity of the body,
Rec =U(2R)/ν. For convenience it is useful to sometimes use
this Reynolds number for the freely rolling case also, in which
case the velocity scale is then taken as the mean terminal veloc-
ity of the cylinder.

Numerical Scheme

The code used for this analysis has previously been tested and
used with flows around cylinders [10, 5] and spheres [9, 11]
(amongst others). The equations are discretised using a semi-
implicit spectral-element scheme with iterative time-stepping.

A fractional-step method [1] is used for the temporal discreti-
sation. The approach adopted is given in [2]. For simplicity,
the majority of the results are presented in the non-dimensional
form.

Results

Fixed Rolling vs. Free Rolling

For convenience, for all simulations, the cylinder’s radius is set
to 0.5 and its velocity to 1 in the fixed rolling case. In or-
der to initially compare the different body forces between the
two cases, we chose a situation where the terminal velocities in
the final state of the system were similar. An initial scanning
through parameters revealed that for Rec = 100, this condition
is met when gsinα = 0.5 and β = 7 for the freely rolling case.

Figure 2: Plots comparison of the drag, lift and torque coeffi-
cients as a function of time for the two cases when the terminal
velocity is similar. Free rolling case (blue line): Rec = 100,U =
1. Fixed rolling case (red dash): Rec = 100,U = 1 which was
equivalent to gsinα = 0.5 and β = 7.

Figure 2 shows the behaviour of the drag, lift and torque coef-
ficients as a function of time in both cases for Rec = 100 and
a mean terminal velocity in the freely rolling case equal to 1.
Each period corresponds to the shedding of a vortex. For each
case, the body forces fluctuate around a similar value. Even
though for the freely rolling case, the velocity varies through-
out the shedding cycle, the shedding frequency is still relatively
close to the fixed rolling case. What varies mostly is the am-
plitudes of the oscillations, which are significantly higher when
the body is free to roll and spin in the fluid under the influences
of the forces acting.

We found that the critical value of the Reynolds number for both
cases at which the flow becomes unstable was approximately
(Rec = 90). This is in good agreement with the one found by
Stewart et al. [7]. Past this value, vortices start forming and
shedding into the wake of the cylinder (as shown in figure 3).

A first look at both cases for varying Reynolds numbers helps us
in comparing how the different fluid forces and torques behave
when the cylinder is fixed and free to roll, as shown in figure 4.
For the free rolling simulations (on the right), β and gsinα were
fixed at 2.0 and 0.5 respectively.

For both simulations, the drag, lift and torque coefficients be-
have similarly: they all decrease as the Reynolds number in-
creases. The variation in the mean drag force is insignificant for



Figure 3: Process of vortex formation and shedding in the wake
of the cylinder as the Reynolds number increases.

Figure 4: Graphs of the mean drag, lift and torque coefficients
as a function of Reynolds number for the fixed (left) and the free
(right) rolling cases. In the latter case, β = 2 and gsinα = 0.5.
The Reynolds number is that case is based on the mean terminal
velocity found from post-processing the data.

Rec > 140, whereas the mean lift force decreases almost lin-
early with Rec. These results are consistent with prior studies.
For Rec < 90, when the final flow is steady, there is an exact
match between the cases, with some variation for the higher
Reynolds number cases, as quantified below.

When the cylinder is free to roll, we extended this study for dif-
ferent values of density ratios and inclination angles and anal-
ysed the behaviour of the different forces, torques and velocities
in order to understand how they influence the dynamics of the
problem.

Effects of the Inclination Angle of the Wall and the Density Ratio

The effect that the slope of the wall, which influences the grav-
itation force along the wall, and the ratio of densities have on
the different body forces and torques was then examined. The
viscosity coefficient was set to 0.01, while gsinα (with β = 2
fixed) varies from 0.1 to 7 and β (with gsinα = 0.5 fixed) from
1.5 to 11.5. The results are specified as a function of Re f , which
governs the asymptotic state of the system, as will be explored
in the next section.

Figure 5: Temporal evolution of the drag force, the lift force,
the viscous torque and the velocity as a function of t∗ for 25 ≤
Re f ≤ 86.6.

The evolution of the drag force, the lift force, the viscous torque
and the velocity as a function of t∗ for different values of Re f
are shown in figure 5. The flow becomes unstable for Re f ≥
56. For the highest Reynolds number cases, the oscillations
in the drag and rolling speed vary by the order of 10% in the
asymptotic state, whilst the lift coefficient varies by a factor of
two.
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Figure 6: Evolution of the rolling speed for the same Re f = 70.7
demonstrating that it determines the final average flow state. β

is given in the figure with gsinα adjusted to match Re f . Both
cases used ν = 0.005.



Asymptotic scaling

Figure 6 shows the rolling speed evolution for two cases with
the same Re f but widely differing density ratios. Whilst the ini-
tial evolution is distinctly different, the final mean asymptotic
flow speed approaches the same value. This demonstrates that
the chosen time and length scales allow the final state to be a
function of the modified Reynolds number only. Of course, the
size of the oscillations is dependent on the density ratio, since it
is easier to change the velocity of a lighter cylinder. The oscil-
lation period depends on the final velocity—so is the same (or
very similar) for these cases.

Lift Force

For the values of 0.5 ≤ gsinα ≤ 7 and 1.1 ≤ β ≤ 12.5 that
were considered throughout this study, the value of the lift force
never exceeded the normal gravitational force towards the wall
(m∗gcosα). Thus the body is always attracted towards the wall,
at least within these ranges.

Prediction of the Mean Terminal Velocity

The goal here is to calculate a mean terminal velocity of the
free rolling cylinder using the fixed rolling simulations. To do
so, let’s consider the non-dimensional form of equation (5) with
U f , f ree 6= 1. In the asymptotic state, the mean value of the rate
of change of the velocity approaches zero. Using equation (5)
this gives

U f , f ree =

(
π
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) 1
2

(6)

The drag and torque coefficients CD and CT are calculated using
the drag force D and viscous torque T extracted from the fixed
rolling simulations.

Figure 7: Comparison of the predicted mean terminal velocity
variation to that obtained from freely rolling simulations.

Figure 7 shows the comparison of the predicted mean terminal
velocity based on freely rolling results, together with direct pre-
dictions from freely rolling simulations for β = 2, gsinα = 0.5
and a varying Reynolds number. Essentially, and as expected,
the two curves match prior to transition at Rec > 90 and deviate
past this point. This divergence is due to the fact that the freely
rolling cylinder does not achieve a steady final state.

Conclusions

Following a study on the fluid-structure interaction of a cylinder
rolling down an incline under different conditions, information
was obtained on the parameters that govern the dynamics of

such systems. In the freely rolling case, the cylinder reaches a
steady final speed for Rec < 90, but above this value the fluid
forces and hence the cylinder velocity oscillate about a mean
state. These oscillation can be of order 10% for the drag and
speed, and 100% for the lift. A scaling analysis indicates that
the asymptotic behaviour, in terms of mean fluid forces and
cylinder speed, depend only on a modified Reynolds number,
Re f . The oscillation amplitudes of the cylinder speed and force
coefficients, however, still depend on the density ratio, since
lighter bodies are more susceptible to the same fluid force. Of
interest, force coefficients obtained from simulations of a fixed
rolling cylinder can be used to approximate the mean final state
of a freely rolling cylinder to reasonably good accuracy (∼ 1%).
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