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The Existence of Multiple Solutions for Rotating Cylinder Flows
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Abstract

A rotating circular cylinder can produce a substantial lift force,
whilst at the same time reducing drag to a minimal level.
Amongst other things, they have been successfully used to re-
place sails for marine vessels, and have potential applications
for MAVs. Recently, it has been shown that the flow past a ro-
tating circular cylinder can admit multiple steady-state flow so-
lutions, which, in turn, explains the seemingly sudden change in
the lift curve as the rotation rate is increased. The current study
extends that research to show that at higher Reynolds numbers,
the possible flow states extend non-trivially, with the unique so-
lution at lower rotation rates splitting into three remarkably dif-
ferent solution branches, with surprisingly different flow struc-
tures.

Introduction

The richly varying wake structure of the flow past a circular
cylinder represents one of the most generic and beautiful flows
of fluid dynamics, often taken as the representative example
of more general bluff body transition. Although less studied,
adding rotation to the cylinder increases the richness and com-
plexity of the wake transitions, as shown in a number of re-
cent studies, e.g., [5, 15, 7, 16, 6, 1, 11, 12, 13, 14]. Amongst
other things, rotation breaks the centreline reflection symmetry
of the flow/wake, allowing a true subharmonic wake mode to
exist, and substantially alters the boundary layer/separation be-
haviour, leading to the suppression of vortex shedding at high
rotation rates. A number of new three-dimensional transitions
that do not exist for the non-rotating cylinder, occur for a ro-
tating cylinder as the rotation rate is varied [12, 13, 11]. Of
some interest, because of the Magnus effect (Prandtl [10]), ro-
tating cylinders have been used as high lift devices replacing
sails for sailing vessels (e.g., Flettner sails) and the rotation can
also substantially reduce the otherwise high level of drag. Ro-
tating cylinders have been used for flow control devices, such as
to reduce/control separation at the trailing edges of bluff bod-
ies like trucks, or to control shedding from larger cylinders and
other bluff bodies (see e.g., [3, 2]).

It was shown numerically by [5] that two-dimensional shedding
from a rotating cylinder disappears when the non-dimensional
rotation rate α = ωR/U & 2. Here, ω is the angular velocity, R
the cylinder radius and U the free-stream velocity. Effectively,
the rotation of the cylinder delays separation from one side of
the cylinder, resulting in a very narrow wake.

For Re = 100, [15] examined the flow state as a function of
rotation rate finding the occurrence of a new shedding mode,
known as mode II shedding, for the Reynolds number range
4.85.Re. 5.15. The shedding frequency in this range is much
lower than that for the standard Bénard-von Kármán shedding

(mode I) at lower Reynolds numbers. Beyond the upper limit of
the Re range, the flow returns to a two-dimensional steady state.
This return to a steady state is also associated with a kink in the
lift curve with rotation rate. Stojković et al. [16] provided a bi-
furcation parameter map for (Re≤ 200)–(α≤ 6), examining the
transitions between steady and two-dimensional periodic flow.
At a similar time, [7] found two steady solutions of the govern-
ing equations for high rotation rates. At Re = 100, [9] showed
that the nature of the steady flow changes as the rotation rate is
increased, showing the transition from steady mode I to steady
mode II. The solutions are connected by a small loop where
three steady solutions can exist at the same rotation rate. The
switch between the two steady modes accounts for the seem-
ingly discontinuous change in the lift coefficient variation with
rotation rate seen previously.

More recently, further details of the parameter map have
been added by [12, 13, 14], especially determining the three-
dimensional transitions for the steady or periodic base states.
Experimental verification of the predicted three-dimensional
modes has been provided by [11], in good agreement with the
numerical stability studies.

The aim of the present paper is to examine the nature of the
steady flow as a function of rotation rate. Extending the work
of [9] to higher Reynolds numbers shows that three separate
steady solutions can be realised at high rotation rates. Unlike
the low Reynolds number case explored by [9], where, in the
overlap region, the three solutions appear virtually identical, at
higher Reynolds numbers this is no longer true and the rotation
rate range for their existence becomes very wide.

Initially, a brief description of the numerical method is pro-
vided. Note that this work follows on from previous studies
[12, 13], for which domain size and resolution studies were un-
dertaken. Following this, the low Reynolds number results of
[9] are reproduced, prior to examining the more interesting be-
haviour at higher Reynolds numbers.

Methodology

Problem Setup

The problem consists of a two-dimensional rotating cylinder
in a uniform stream. The two governing parameters are the
Reynolds number, Re = UD/ν, with D the cylinder diameter
and ν the kinematic viscosity, and the non-dimensional rotation
rate, α = ωR/U , as defined above.

Numerical Method

The two-dimensional steady incompressible Navier-Stokes
equations govern the flow. These are solved using a varia-
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Figure 1: Simplified stability map for the wake states of a rotat-
ing cylinder. For the α–Re range shown, there are two 2D shed-
ding regions marked by the light grey, whilst at higher Reynolds
numbers the flow becomes three-dimensional (dark grey). At
lower Reynolds numbers and extending to higher rotation rates,
the flow remains both two-dimensional and steady.

tion of the spectral-element method [18, 19, 17, 20], which
uses the penalty method to enforce the incompressibility con-
straint (e.g., [22]), together with Newton iteration to converge
to the steady-state solution. The code has been validated
and successfully employed for a number of related problems
(e.g., [4, 21, 8]). The method uses a tensor-product of high-
order Lagrangian interpolants to represent the velocity varia-
tion within quadrilateral macro-elements of the mesh based on
the Gauss-Legendre-Lobatto quadrature points within elements.
The macro-elements can have curved boundaries, allowing ac-
curate representation of the cylinder boundary. The polynomial
order can be chosen at runtime, allowing a resolution study to be
performed relatively easily, as long as the macro-element mesh
is constructed carefully and is sufficiently fine. Typically either
3rd or 4th order polynomials, i.e., elements with 4×4 or 5×5
points, were used for the simulations. The results are verified
against those of [9], as discussed in the results section.

The computational domain was a backwards “D” shape, with
the upstream and side boundaries placed 50D from the centre
of the cylinder, situated at (0, 0), leading to a blockage of 1%.
The downstream boundary is positioned at x/D = 40. At the
upstream and side boundaries, the free stream velocity is im-
posed, and at the downstream boundary the velocity gradient is
set to zero. An advantage of the penalty formulation is that it
does not require explicit boundary conditions for the pressure.
The specified rotational velocity is applied at the cylinder sur-
face. The mesh was carefully constructed with a very high mesh
point concentration at the cylinder boundary to resolve the high
velocity gradients there.

At higher Reynolds number, the use of the Newton iteration ap-
proach requires a good initial starting estimate for the velocity
field. This is obtained by finding the solution at a low Reynolds
number and slowly incrementing the Reynolds number to reach
the desired final value. For most of the runs, the solution is con-
verged at a particular rotation rate, then that solution is used as
an initial guess at the next rotation rate. Typically, it only re-
quires a few iterations to reduce the error to machine accuracy,
if the initial guess is sufficiently close.

Results

A stability map for the flow state was produced by [16] showing
the two-dimensional wake state as a function of Reynolds num-
ber and rotation rate. This has been extended to show the three-
dimensional transitions by [12, 13]. A simplified version of the
parameter map has been reproduced in figure 1 for 0 ≥ α ≥ 7
and Re ≤ 350. In general, rotation stabilises the wake against
three-dimensional transition, although new modes not found in
the non-rotating circular cylinder wake appear. Interestingly,
the steady flow is unstable to transition from a two- to three-
dimensional steady wake even at quite low Reynolds numbers
(Re < 50) as the rotation rate is increased. At even higher ro-
tation rates (α & 5.5), the steady flow state changes character
and three-dimensionality is again suppressed. Note that even
at Re = 200 there are still large rotation rate ranges where the
flow remains two-dimensional. Also, of importance to the cur-
rent paper, there are two different stable steady-state solutions,
denoted as modes I and II. These occur at lower/higher rota-
tion rates, respectively. The transition occurs across a narrow
region in parameter space, where the stable state is type II two-
dimensional periodic shedding. These states have been differ-
entiated by whether the hyperbolic point in the wake forms in
front or behind the centre of the cylinder.

Pralits et al. [9] examined the steady flow states at Re = 100,
showing the existence of a very small loop in the lift–rotation
rate curve, between 5.17 < α < 5.21. Over this range, three
steady flow states exist, although the physical difference be-
tween these states cannot really be determined by eye. This
calculation was repeated here with the results shown in figure 2.
The indistinguishable results of [9] are overlaid. The loop oc-
curs between 5.15 < α < 5.19, agreeing with [9] to better than
0.5%, with this slight difference probably due to the different
blockages of the computational domains.

On increasing the Reynolds number, the range of rotation rate
over which multiple solutions exists increases. The approxi-
mate limits are shown in table 1. Above approximately Re =
185, the righthand end of the loops appears to open, extend-
ing the turning point to beyond α = 10. At Re = 200, figure 3
shows that there are three distinct steady solution branches be-
yond α ' 4.73. While the two lower branches appear to have
very similar lift force variations, they represent quite distinct
solutions.

The differing flow structures are shown in figure 4 with filled
vorticity contours overlaid by streamlines in the neighbourhood
of the cylinder. These solutions correspond to Re = 200 and
α = 6.5. The first figure shows the structure for the upper
branch of figure 3. The vorticity is concentrated in the vicinity
of the cylinder with almost circular streamlines at small radii.
The righthand figure shows the flow pattern obtained by slowly
increasing the rotation rate from small values, using the previ-
ous solution as an initial guess for the next rotation rate. The
vorticity is no longer localised to be close to the cylinder. In
fact, at higher rotation rates, the top recirculation grows in size
and extent to form a large vortical structure centred at a signifi-
cant distance from the cylinder centre. The image in the centre
shows the flow obtained starting from the upper branch solu-
tion using analytic continuation to traverse the lefthand turning
point. Effectively, this involves using quadratic extrapolation
from solutions near the turning point to project to a point around
the corner. That branch can then be computed by again slowly
increasing the rotation rate to higher values. The flow structure
on this branch appears to be in-between the two other solutions.
As before, a large amount of vorticity collects above the cylin-
der.

The behaviour of the drag coefficient at Re = 200 for higher



rotation rates is shown in figure 5. The three branches seen in
the lift coefficient are also seen here. In general, the drag is
very small relative to the lift coefficient for all three branches.
Beyond the critical rotation rate, the lower loop drag approaches
that of the upper branch at lower rotation rates, and the lower
branch drag at higher rotation rates.
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Figure 2: Variation of the lift coefficient on the cylinder as a
function of rotation rate for Re = 100. The kink in the curve
is actually a small loop, where three steady flow states co-exist.
The results of [9] have been overlaid but they are indistinguish-
able from the current predicted variation to graphical accuracy.
The inset shows a magnification of the loop structure. Also,
marked are the predictions from potential flow theory and a pre-
diction of Prandtl. Note that the predicted lift variation is insen-
sitive to Reynolds number, except for the loop region, as can be
verified from comparing the lift prediction in figure 3 below.

Range for Multiple Solutions
Re αmin αmax ∆α

100 5.15 5.19 0.04
120 5.03 5.11 0.08
150 4.89 5.08 0.19
175 4.80 5.14 0.34
185 4.77 5.24 0.47
200 4.73 � 10

Table 1: Extent of rotation rate range for multiple solutions as a
function of Reynolds number.
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Conclusions

Although the incompressible Navier-Stokes equations do not
forbid the existence of multiple solutions for the same problem
parameters, for most flows this does not appear to occur. Well
known counterexamples are Taylor Couette flow, for which the
the number of Taylor vortices is a function of the initial condi-
tions, and vortex-induced vibration, with the possibility of hys-
teretic behaviour in some circumstances. The case examined
here shows that the addition of rotation to a cylinder in an open
flow can increase the mathematical complexity of the solution
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Figure 3: Variation of the lift coefficient on the cylinder as
a function of rotation rate for Re = 200. Beyond 4.73, three
steady solutions are present. The loop that exists for lower
Reynolds numbers opens at the right end. Two of the solutions
have almost identical lift but show distinct flow patterns.
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Figure 5: Variation of the drag coefficient on the cylinder as
a function of rotation rate for Re = 200. Beyond 4.73, three
steady solutions are present. Note that size of the drag coeffi-
cient relative to the lift coefficient.

topology, with high rotation allowing the existence of three dis-
tinct steady solutions. Whilst only one of these solutions is sta-
ble, it may be possible to stabilise the other using passive con-
trol strategies or another rotating cylinder to mutually stabilise
the large vortex structures generated.
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