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Abstract 

A windcatcher is a structure fitted on the roof of a building to 
provide ventilation for the interior space employing wind power; 
it exhausts the inside stale air to the outside and supplies the 
outside fresh air into the building interior space working by 
pressure difference between outside and inside of the building 
and using ventilation principles of passive stacks and wind tower, 
respectively. 

In this paper, the effect of different geometric shapes of 
inlet/outlet for a two-sided windcatcher on the flow velocity, flow 
pattern , and flow rate which affect on the ventilation quality 
through a three-dimensional and typical room fitted with a two-
sided windcatcher is observed numerically, applying a 
commercial computational fluid dynamics (CFD) software 
package. 

The standard RANS K-ε CFD method is used in all simulations 
for three different geometric shapes namely square shape, 
rectangular shape and circular shape while they have the same 
area.  

 It is found that the geometric shape of windcatcher’s inlet\outlet 
strongly affects flow pattern, flow rate and flow velocity 
specially in the living area of the room and there is a relationship 
between the length/width ratio of the rectangular shape and the 
ventilation quality.  

 

Introduction  

Applying renewable energy sources is the proper solution for 
preventing environmental pollution. Wind power is one of the 
clean energies employed in windcatcher systems for providing 
natural ventilation; windcatcher as a green feature has been used 
over centuries  in the hot arid regions, particularly in Iran and the 
other Persian Gulf countries in one hand and north of Africa 
region such as Algeria, Egypt and other north African countries 
in another hand to provide natural ventilation, passive cooling 
and thermal comfort [1,2,3].  

Ease of operation and maintenance, low cost , durability and 
being noiseless of windcatcher system in comparison with 
electro-mechanical ventilation systems, requiring no fossil 
energy, supplying clean air  and using sustainable energy of wind 
power have led to use of  the windcatcher as a  passive and 
environmental friendly system. 

The experimental studies of windcatcher systems for all different 
cases are obviously expensive or even impossible. Using 

computational fluid dynamics (CFD) for the windcatcher 
performance assessment has become a creditable tool for flow 
analysis in the buildings [6,10]. According to the previous 
numerical studies and simulations which have been done by the 

same authors using  the standard RANS K-ε and LES methods, 
effects of a two-sided windcatcher’s location, the shape of the 
windcatcher at its bottom, inlet velocity, and the length of the 
windcatcher’s bottom on flow pattern and flow velocity have 
been considered for two dimensional and three dimensional 
models [7 ,8]. 

In this paper, effect of three different shapes of a two-sided 
windcatcher’s inlet/outlet including square shape, rectangular 
shape and circular shape but the same areas on flow velocity, 
flow pattern and flow rate of the windcatcher are considered. 

Modelling and Computation 

A three dimensional room with the size of  5×4×3 mଷ has been 
fitted with a two-sided windcatcher, with different geometric 
shapes of inlet\outlet surrounded by large space, is simulated 
using CFD-ACE+, a CFD software package from the ESI group.  
Figure 1 shows the model with square shape of inlet/outlet 
without its surrounded space.  

The height of top part of  windcatcher (above the roof) from the 
roof’s surface has been assumed to be 2 m and its height at the 
bottom (under the roof to the beginning of the windcatcher’s 
opening) is assumed 10 cm in all models. It is assumed that wind 
blows from right to left and perpendicular to the windcatcher’s  
inlet area. 
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Figure 1. A modelled room fitted with a windcatcher for square shape of 
inlet/outlet 
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