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Abstract

Turbulence stress statistics in a boundary layer atReτ ≈ 10,000
are measured using custom× hot-wire probes. The results show
logarithmic behaviour in the profiles of the streamwise and span-
wise turbulence intensities against wall-normal distancein the
same region in which the mean velocity exhibits logarithmicbe-
haviour, consistent with the predictions of the attached eddy hy-
pothesis. Comparisons are drawn with computations applying
the attached eddy hypothesis using two different typical repre-
sentative eddies: (i) hierarchies of individual hairpins and (ii)
hierarchies of packets of hairpins. Promising results are obtained
when a packet-eddy is used rather than an individual hairpin-
eddy, when compared with experimental results in the logarith-
mic region.

Introduction

In the attached eddy hypothesis, the turbulent boundary layer is
idealised as a collection of randomly arranged geometrically sim-
ilar representative eddies [11]. From this model, Townsend[11]
concludes that at sufficiently highRe, the turbulence intensities
follow
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in the logarithmic region, assuminguw/U2
τ = −1, whereUτ cor-

responds to the friction velocity, whileA1, A2, B1, B2 and B3
are constants which depends on the form of the attached eddies.
Throughout the paper, we use the co-ordinate systemx, y andz
to refer to the streamwise, spanwise and wall-normal directions;
with u, v andw denoting the corresponding fluctuating velocities,
respectively. Here we use the superscript ‘+’ to indicate viscous
scaled quantities, while capitalisation and overbars indicate time
averaged quantities.

The representative eddies have characteristic heights ranging
from δ1, the smallest eddy, to∆E, the largest eddy of the order
of the boundary layer thickness (δ). Eddies of identical charac-
teristic height are referred to as a ‘hierarchy’, with multiple hier-
archies representing various energetic scales present in the flow.
Figures 1(a) and (b) show two examples of simple representative
eddies (further details of the geometries are provided in a later
section), while figures 1(c) and (d) show the idealised boundary
layers with three hierarchies of representative eddy (i.e.δ1 and
∆E correspond to the characteristic heights of the first and third
hierarchy, respectively). It should be noted that the representa-
tive eddy is a statistical concept which captures the bulk features
of the average eddy shape. In reality, the shape and size of ed-
dies evolve over their life span and hence it is highly unlikely
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(b) Packet-eddy
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(c) Hierarchies of hairpin-eddy
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(d) Hierarchies of packet-eddy

∆E

δ1

∆x/δ
∆y/δ

z/
δ

−4
−3

−2
−1

0
1

2
3

−1
0

1

0

1

Figure 1. Representative eddy constructed from (a) a singlehairpin vor-
tex and (b) multiple (seven) hairpin vortices in a packet.r0/δh = 0.02,
α = 10◦, ∆xp/δh = 0.4 in the present analysis. (c) and (d): Idealisation
of a boundary layer composed of three hierarchies of the representative
eddies shown in (a) and (b), respectively. It should be notedthat, the
streamwise and spanwise coordinates are shown here are relative (∆x,∆y)
to an arbitrary position.



that they would instantaneously resemble the ensemble-averaged
form. For example, there is evidence suggesting that instanta-
neously, vortices can be cane like with a single leg extending to
the wall [3] rather than the idealised hairpin type employedhere
with both legs extending to the wall. However, since the likeli-
hood of the cane vortices containing a leg with the opposing sign
is equal [3], the resulting ensemble-average view will be very
similar to that of a hairpin.

The initial attached eddy model of Perryet al. [8, 9] employed
hierarchies ofΛ shaped vortices. Perryet al. [9] report that the
results from this model show a qualitative agreement with the
experimental results. Marusic [5] refined the model of Perryet
al. such that the representative eddy is formed from multiple hair-
pin vortices, rather than a single hairpin vortex. The multiple
vortices align in the streamwise direction, similar to the ‘packet’
paradigm proposed by Adrianet al. [1]. Marusic found that the
subsequent two-point correlation results from hierarchies of the
packet-eddy are in a better agreement with the experimentaldata
than those obtained using a single hairpin as the representative
eddy [5].

Here, we compare the turbulence intensities of all three com-
ponents and the Reynolds shear stress from the attached eddy
hypothesis against experimental data. A link between the rep-
resentative eddies used in the attached eddy hypothesis andthe

slope of the logarithmic behaviour inu2 andv2 is explored.

Experimental Set-up

The experiments are conducted in the High Reynolds Number
Boundary Layer Wind Tunnel (HRNBLWT), located at the Uni-
versity of Melbourne. This is an open-return blower tunnel with
a long working section (27 m), which allows a boundary layer
with a thickness of up to 0.35 m to be developed. This enables
the development of high Reynolds number (Re) boundary lay-
ers at relatively low freestream velocities. The key advantage of
this approach is that the smallest energetic length and timescales
are accessible with conventional measurement techniques.For
example, atReτ ≈ 10,000 the viscous length and time scales cor-
respond to approximately 30µm and 60µs, respectively.

Two hot-wires in an ‘×’ arrangement are used to measure theu, v
andw velocities. As the×-probe can only measure two velocity
components simultaneously, theu, v andw statistics presented
here have been compiled from two separate profiles taken us-
ing two different×-probe configurations. All the×-probes are
custom made in-house. A schematic highlighting key features is
given in figure 2(a). The× formed by the two hot-wires defines a
box with dimensions 0.4×0.4 mm (14×14 wall units) and a wire
spacing of 0.2 mm (∆s+ = 7) as shown in figures figure 2(b) and
(c). These probes are significantly more spatially compact than
commercially available alternatives. The probes are manufac-
tured such that the sensing elements remain parallel to the wall
when the probe body is inclined at 10◦ to the horizontal (this in-
clination is shown in figure 2a), allowing access close to thewall
while also minimising aerodynamic blockage effects.

The prongs of the custom probe are constructed from four
250µm diameter stainless steel wires held together by epoxy
resins. The prong tips are sharpened down to 20µm, and a
thin layer (< 10µm) of copper is deposited via electrolysis. The
copper-plating significantly improves solderability of the prong
tips, allowing 2.5µm diameter platinum wires to be soldered to
them. Further details of the custom probe and the calibration
procedure employed is given by Baidyaet al. [2].

The measurements are conducted at approximately 18 m down-
stream of the tripped inlet of the working section with a nom-
inal freestream velocity of 15 m/s, which corresponds toReτ ≈

(a)

10◦

Ceramic
housing

Epoxy

Stainless steel
prong

x (mm)

y (mm)

z
(m

m
)

0
10

20

30
40

50
60

−202
−5

0

5

10

15

(b)

0.4 (lx)

0.4 (ly)

0.2
(∆sz)

(c)

0.4 (lx)

0.2
(∆sy)

0.4 (lz)

Figure 2. Schematic of the custom×-wire probe (all dimensions in mm).
(a) Probe at designed orientation for boundary layer measurements. The
region in the square box is enlarged for (b)u-v measurement configura-
tion and (c)u-w measurement configuration, with the 0.4×0.4×0.2 mm
cuboid volume that encapsulates the sensors shown by the dashed lines.
The platinum sensing elements are shown as solid red lines in(b) and (c).

10,000, under nominally zero pressure gradient conditions. The
boundary layer thickness and friction velocity have been ob-
tained by fitting the mean velocity profile to the composite for-
mulation of Chauhanet al. [4] yielding δ = 0.33 m andUτ =
0.48 m/s, respectively.

Attached Eddy Formulation

In this section, we outline how the turbulence stress profiles
are determined following the attached eddy formulation. Inthe
present analysis, we use hierarchies of hairpin- and packet-eddies
to construct the turbulence stress profiles. Throughout, weuse a
Λ vortex as the model for a hairpin, similar to the work of Perry
et al. [8]. TheΛ vortex has an inclination angle of 45◦ with re-
spect to thex direction. Figure 1(a) shows a schematic of the
Λ hairpin-eddy used in this study. For the packet-eddy, sevenΛ

vortices each separated by 0.4δh in thex direction are used. Here,
δh corresponds to the characteristic height of the largest hairpin
in the packet. The height of eachΛ vortex is adjusted so that the
heads are aligned in thex direction with a characteristic angle
of 10◦, mimicking experimental observations [1]. Figure 1(b)
shows the hairpin alignment used to construct the packet-eddy. It
should be noted that to preserve the no-penetration condition at
the wall, each vortex rod is supplemented with a corresponding
mirror image about the wall.

As the representative eddies across the hierarchies are randomly
aligned in the attached eddy model, the turbulence stressesfrom
multiple hierarchies can be calculated solely using the basis func-
tions I i j obtained from a single representative eddy following
Campbell’s theorem. The Townsend eddy-intensity function, I i j
is given by
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whereui andu j are the induced fluctuating velocities due to the
representative eddy, whileU0 denote the characteristic velocity
scale.
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Figure 3. Comparison between Townsend eddy-intensity functions for
hairpin- (empty symbols) and packet (solid symbols) representative ed-
dies constructed usingΛ shaped vortices. The symbols correspond to:�

I11, � I22, ♦ I33 and△ −I13.

←−1.2ln
z
δ
+B1

ւ −0.28ln
z
δ
+B2

z/δ

∣ ∣ ∣
u i

u
j+

∣ ∣ ∣

10−4 10−3 10−2 10−1 100
0

2

4

6

8

10

12

14

Figure 4. Turbulence stresses determined experimentally,at Reτ ≈
10,000. The symbols correspond to:� u2, � v2, ♦ w2 and △ −uw,
while the dot-dashed and dotted line represent the logarithmic law fit-

ted tou2 andv2, respectively. The vertical lines corresponds to locations
z+ = 2.6

√
δ+ andz+ = 0.15δ+.

The turbulence stress distribution from multiple hierarchies of
geometrically similar eddies can be calculated using

uiu j
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=
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)

pH (δh)dδh, (5)

wherepH(δh) is the p.d.f of hierarchy scales. Empirically, it is
known that for largeRe−uw+ approaches unity, hence for the
attached eddy formulation we selectU0 such that−uwpeak/U2

0 =

1 and takeU0 asUτ for our finite but relatively highRecases.

We follow the approach of Townsend [11] and assumepH(δh) =
1/δh. The 1/δh distribution implies a doubling of the representa-
tive eddy density as the characteristic height halves. Perry at al.
[8] hypothesise that jitter introduced by randomness leadsto a
continuous distribution rather than a discrete geometric distribu-
tion of scales. It should be noted that equation (5) is marginally
different from Perryet al. [7], where an additional weighting
term Q(δh/∆E) is present to account for non-uniformity in the
vorticity distribution across the hierarchies. In the present anal-
ysis, the vorticity distribution across the hierarchies isconsid-
ered to be uniform and henceQ = 1. It should be noted that
the 1/δh distribution is a simplified view of a boundary layer,
which in reality is far more complex. However, the simplified
model still manages to capture the logarithmic behaviour ofU
anduw≃ constant and hence is a useful idealisation of the log
region. Perry at al. [8, 9] propose modifying thepH(δh) distribu-
tion to obtain the correct mean velocity profile in the buffer and
wake regions. However, for the present analysis we are only in-
terested in the log region and hence have used the form proposed
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(b) Hierarchies of packet-eddy
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Figure 5. Turbulence stresses following the attached eddy hypothesis.

The symbols correspond to:� u2, � v2, ♦ w2 and△ −uw. Representative
eddy constructed using (a) a singleΛ vortex and (b) a packet of multiple
Λ vortices. Solid lines indicate the logarithmic fit foru2, while dashed
lines indicate the logarithmic fit forv2. The logarithmic law determined
from experiments, shown in figure 4 is replicated for reference.

by Townsend. It has also been suggested that different repre-
sentative eddies may be required to model the wake region [7].
Again, this modification is not required here, where we only seek
to model the logarithmic region.

Equation (5) can be rewritten in the logarithmic form as

uiu j

U2
τ

=

∫ λE

λ1

I i j (λ)w(λ−λE)dλ, (6)

where λ = ln(δh/z), λ1 = ln(δ1/z) and λE = ln (∆E/z). The
weighting functionw(λ−λE) = 1 for the 1/δh distribution of hi-
erarchies used in the present study.

Results

Figure 3 shows the normalised eddy-intensity functions forthe
hairpin- and packet representative eddy. It is evident thatasz/δh
decreases,I11 and I22 approach a constant whileI33 and I13 ap-
proach zero sinceu, 0, v, 0 andw= 0 at the wall. The normal-
isation factorM is chosen so that

M
∫ ∞

0
I13(λ)dλ = −1. (7)

It follows then that the constants given in equations (1) - (3) can
be related to the functions as:

A1 =M I11(λ =∞), (8)

A2 =M I22(λ =∞), (9)

and

B3 =M
∫ ∞

0
I33(λ)dλ, (10)

as given by Perry at al. [9]. Figure 3 indicates that forz/δh ≤
10−3 (λ ' 7), the eddy-intensity functions have sufficiently ap-
proached the corresponding asymptotic values. This implies that



δ1/∆E = 10−3 is sufficiently close to the asymptotical state, since
uiu jpeak≈

∫ ∞
0 I13dλ for δ1/∆E ≤ 10−3.

In the near-wall region, the velocity contribution from thehair-
pin legs dominates due to the hairpin legs’ proximity to the wall
and hence the value ofI11 andI22 at the wall is primarily due to
the geometry of the hairpin leg. A low streamwise momentum
region exists between the legs of hairpin vortices, while each leg
is flanked by elongated regions of low and highv. Hence, in a
packet-eddy,u contributions from each vortex overlap and com-
bine, whilev contributions from each vortex remain isolated with
little overlap between adjacent vortices. Hence,I22 at z/δh = 0
scales approximately with the number of hairpins in the packet
while I11 atz/δh = 0 does not. Although the area under theM I13
curve is adjusted to equal−1, theuwcontribution for the packet-
eddy is concentrated at a lower wall position compared to the
individual hairpin-eddy. This is because the hairpin headsform a
characteristic angle of 10◦ in the packet-eddy and hence a higher
proportion ofuw containing motions are at a lowerz compared
to the hairpin-eddy.

The experimental data provide evidence of the logarithmic be-

haviour inu2 andv2, as predicted by equations (1) and (2) and
are shown in figure 4. The value for the gradient in equation (1),
A1 ≈ 1.2 reported by Marusicet al. [6] is in good agreement with
the current data, whileA2 ≈ 0.28 is obtained based on a linear re-
gression in the region 2.6

√
δ+ < z+ < 0.15δ+. Comparison with

thev2 profile obtained from Direct Numerical Simulation (DNS)
of a developing boundary layer [10] shows good agreement, al-
beit at lowRe. A survey ofA2 in the pipe, channel and boundary
layer DNSs atReτ ≈ 2,000 reveals that the logarithmic behaviour

of v2 in the boundary layer is much shallower than that observed

in the pipe and channel, where both exhibitA2 ≈ 0.5. For w2

the experimental data show a slight increase withz in the log re-
gion, where the attached eddy model predicts constant stress (see
equation 3). However, this may be explained by more energetic
high-wavenumber viscous motions associated with Kolmogorov
inertial subrange and dissipative range at a higherz position ob-
served to occur at a finiteRe[7], which is not accounted for in
the attached eddy model.

Figure 5(a) and (b) show the correspondinguiu j profiles follow-
ing the attached eddy hypothesis. When hierarchies of hairpin-
eddies are used (ref. figure 5a), the slope of the logarithmicre-

gion for bothu2 andv2 is similar withA1 ≈ A2 ≈ 0.9 for this par-
ticular hairpin-eddy geometry. Hence, the value ofA1 is under-
estimated while the value ofA2 is overestimated when compared
with the experimental data. When hierarchies of packet-eddies
are used instead of the individual hairpin-eddy, the value of A1
increases while the value ofA2 decreases (ref. figure 5b). As
discussed earlier,u contributions from multiple aligned vortices
superimpose, resulting in a significant increase in the maximum
u deviation occurring within the packet-eddy. A similar mecha-
nism applies tow but with a smaller magnitude, whilev contri-
butions are isolated and the maximum deviation does not change
significantly with the form of the representative eddy. Hence
∆I11 > ∆I13> ∆I22, where∆ signifies the difference between the
eddy-intensity functions for the packet- and hairpin representa-
tive eddies. This leads to an increase inA1 and a decrease inA2
when I13 is normalised to be equal to−1, a trend that is more
consistent with the experimental data.

Summary and Conclusions

Experimental data for a zero pressure gradient boundary layer

at Reτ ≈ 10,000 show a logarithmic behaviour for theu2 and

v2 statistics, in agreement with the attached eddy hypothesis. A

weak relationship betweenw2 andz is observed experimentally
in the log region, in contrast to the constant value predicted by

the attached eddy hypothesis. The departure ofw2 from the con-
stant value may be attributed to finiteReeffects, which results in
contribution from high-wavenumber motions differing with thez
position [7].

The experimental turbulence stress profiles are compared with
the profiles from hierarchies of hairpin- and packet-eddiesob-
tained from the attached eddy hypothesis. The profiles from hi-
erarchies of hairpin-eddies underestimate the slope of theloga-

rithmic law in u2, while the slope ofv2 is over estimated. Im-
proved results are obtained using hierarchies of packet-eddies,

where an increase in the slope of the logarithmic law inu2 is

observed as well as a decrease in the slope inv2. Therefore,
the packet scenario is a better idealisation of the representative
attached eddy for the logarithmic region of wall turbulencecom-
pared to an individual vortex structure. These results are based
on the simplest constructions of representative eddies, and fur-
ther refinement would be needed to obtain more precise quanti-
tative predictions. The trends, however, (packet versus individual
eddies) are not expected to be different.
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