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Abstract

This paper considers model-based estimation and control of
the flow past a cylinder in low-Reynolds-number simulations.
There are two parts to the study. The first part considers model-
based control of the wake using a single velocity measurement
as the feedback signal. Actuation is achieved using blowing
and suction on the cylinder’s surface. A reduced-order model
is formed and used to design robust feedback controllers us-
ing modern control techniques. These robust controllers give
rise to improved closed-loop performance, and are effective
over a wider Reynolds number range than previously seen. As
Reynolds number increases, however, single-sensor-based con-
trol becomes more challenging as the downstream extent of the
absolutely unstable region increases. This motivates the second
part of the study. Keeping with a single sensor measurement,
we investigate how well one can estimate the entire flow field
using only this single sensor. To do so, we use a Kalman filter,
and excellent results are seen.

Introduction

The onset of the von Kármán vortex street in the two-
dimensional cylinder wake is well-documented, the vortices
first appearing at a Reynolds number near Re = 49 [20]. This
vortex street gives rise to increased drag and unsteady lift forces.
The advantages of suppressing these vortices is therefore clear,
and the two-dimensional cylinder wake has become a canonical
problem in flow control.

Active flow control schemes employ actuators to provide exter-
nal energy to a fluid flow, thereby controlling it in some desired
way. This actuation may be predetermined (open-loop), or may
respond to some sensor measurement via some feedback law
(closed-loop).

The earliest studies of closed-loop control of vortex shedding
used a proportional feedback gain, whereby a sensor measure-
ment at some point in the wake was multiplied by a scalar, pro-
portional gain and fed back to give the control signal. The
first such study was performed by Berger [1]. Vortex shed-
ding, which occurred naturally for the oval-shaped cylinder at
Reynolds numbers of 77 and above, was suppressed by feed-
back at Reynolds numbers up to 80. Proportional feedback con-
trol was also used by Roussopoulos [15] in his experimental
study of a circular cylinder, and by Park et al. [11] in their nu-
merical study. In both cases, vortex shedding was completely
eliminated at Reynolds numbers slightly above that correspond-
ing to the onset of vortex shedding.

In order to achieve better closed-loop control, more recent stud-
ies have used a wide range of control strategies including neural
networks [4]; optimal control [5, 14, 2] and suboptimal control
methods [10]; Linear-Quadratic-Gaussian (LQG) control [13];
and Proportional-Integral-Derivative (PID) control [16, 18].

In this paper, closed-loop control of the cylinder wake is inves-
tigated in direct numerical simulations at Reynolds numbers up
to 100. The emphasis is on model-based control using reduced-
order modelling techniques and robust control methods. After
introducing the modelling and control methods used, we first

look at model-based control at a Reynolds number of 60. We
demonstrate the superior performance of the model-based con-
troller over the early trial-and-error-based proportional feed-
back control studies. We then look at control at Re = 100,
and demonstrate the challenges of single-sensor-based control
at this higher Reynolds number. Motivated by these challenges,
we then design a dynamic estimator (a Kalman filter) for the
wake, allowing us to estimate the entire flow field from a single
sensor measurement.

Modelling and control of the cylinder wake

The flow is solved using direct numerical simulation. The spa-
tial discretization is performed in cylindrical coordinates us-
ing an energy-conservative finite-difference scheme which is
described in [3]. Time integration is performed using a low-
storage third-order Runge-Kutta/Crank-Nicolson scheme. The
computational grid has 256 points in the circumferential direc-
tion; 220 points in the radial direction (clustered near the cylin-
der surface); and extends 78 cylinder radii from the cylinder’s
centre. Numerical results have been validated using grid refine-
ment and boundary placement studies, as well as comparison
with experimental data. At Reynolds numbers between 60 and
100, the Strouhal numbers found agree with the experimental
parallel-shedding data of Williamson [19] to within 1 %.

We adopt the same feedback control arrangement as Park et
al. [11] whose study, like this one, was numerical. The feed-
back arrangement is shown in figure 1. Sensing is provided by
a probe positioned 2.75 cylinder diameters downstream of the
cylinder’s centre which measures the vertical velocity. Actu-
ation is provided by anti-symmetrical blowing-and-suction at
the cylinder’s surface. The centres of the two actuation regions
are located at angles of ±70◦ from the cylinder’s downstream-
pointing horizontal, and their distribution is Gaussian, specified
such that the amplitude has fallen to 1 % of its peak at an angle
of ±25◦ from its centre.
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Figure 1: Feedback control arrangement.

In order to design feedback controllers, we first require a
reduced-order model of the cylinder wake. This can be achieved
by forming a state-space model of the form

ẋ(t) = Ax(t)+Bu(t) (1a)
y(t) =Cx(t), (1b)

where u ∈ Rp is a vector of inputs; y ∈ Rq is a vector of out-
puts; x ∈ Rn is the system state; and A, B and C are suitably-
dimensioned matrices. The feedback arrangement, shown in
figure 1, has a single input, p = 1, and a single output, q = 1.



Figure 2: Control at Re = 60: control with (a) a proportional feedback gain; and (b) a model-based controller; (c-e) transverse velocity
at three locations, which are indicated in parts (a,b). The measurement used for control is shown in (d).

We use the Eigensystem Realization Algorithm (ERA) to form
a reduced-order model. The ERA uses a system’s impulse
response—found in the cylinder’s case directly from simula-
tion data— to form a Hankel matrix, which is closely linked to
the system’s observability and controllability Gramians. These
Gramians can be obtained after performing a singular value de-
composition of the Hankel matrix. The ERA produces reduced-
order models which are balanced, the balancing referring to
their observability and controllability Gramians being equal and
diagonal. Physically this means that the input-output behaviour
of the system is properly captured, and this is important for
feedback control purposes. For more details on the ERA, see
[8, 7], and for its application to flow control, see [9, 6].

Model-based control at Re = 60

We first look at control at a Reynolds number of 60. Since
the wake is unstable at this Reynolds number, it is difficult to
find a linear, reduced-order model. We therefore first find a
reduced-order model at Re = 45, for which the wake is stable;
design a feedback controller for this Reynolds number; and ap-
ply the controller at Re = 60. Since robust control methods
are used (specifically, H∞ loop-shaping), the controller is suf-
ficiently robust that it achieves closed-loop stability when ap-
plied at Re = 60. Results are shown in figure 2, where the
model-based controller is compared to control with a propor-
tional feedback gain like that used by Park et al. [11]. This pro-
portional gain was optimized over a range of values, and hence
represents the best that could be found. The model-based con-
troller provides better attenuation not only at the sensor loca-
tion (figure 2 c), but also better attenuation in the entire domain
(shown at a particular instant in time in figure 2 a,b).

Model-based control at Re = 100

We now look at control at a higher Reynolds number of 100.
Figure 3 shows the wake’s closed-loop impulse response us-
ing a feedback controller which was designed for this Reynolds
number. (Again, the controller has been designed using H∞

loop-shaping methods.) Figure 3 highlights the challenges of
control at this higher Reynolds number: although the controller
achieves good suppression at the sensor location (which is what
it sets out to achieve), significant unsteadiness still exists down-
stream of the sensor. This is reasonable: The convective nature
of the wake means that the controller is unaware of what is hap-

pening downstream of the sensor, and since it is unaware of
this downstream unsteadiness, it cannot possibly do anything
about it. This is borne out in parts (c) and (e) of figure 3,
which show the time variation of the sensor measurement and of
the blowing-and-suction actuation, respectively. The controller
suppresses oscillations at the sensor location quite effectively
and, once it has done so, the control signal remains small: as
far as the controller is concerned, there is very little left to sup-
press. This phenomenon emerges at higher Reynolds numbers
because the wake’s region of absolute instability extends further
downstream [12]. The consequence is that single-sensor-based
control is not suitable at these higher Reynolds numbers. This
in turn motivates the next and final section, where we attempt
to use our single sensor measurement, together with a reduced-
order model of the wake, to estimate the entire flow field.

Estimation problem at Re = 45

One way to address the larger region of absolute instability seen
in the previous section would be to place the single sensor fur-
ther downstream. While this certainly provides better informa-
tion about the far wake, it also introduces a problem of its own:
a larger time delay in the control loop. With the sensor further
downstream, the time taken for information from the cylinder
(where disturbances that need to be controlled are likely to be
generated) to propagate to the sensor location increases, and
this has an adverse effect on control [17]. There is therefore a
trade-off between the size of the time delay and the information
retrievable from the far wake when a single sensor is used. A
natural alternative would be to use two or more sensor locations
for control. Then sensors near the cylinder would provide rel-
atively new information, whilst those further away would pro-
vide information about the far wake. This is not particularly
practical, though, and so an alternative is sought.

In this section we continue to measure at the same location with
a single sensor. Motivated by the results of the previous sec-
tion, we now investigate how well one can estimate the entire
flow field using this single sensor measurement. This is an im-
portant question because if we can estimate the entire flow field
sufficiently well with a single sensor, and then perform control
actions based on this estimate, then we should be able to over-
come the difficulties encountered at higher Reynolds numbers
without requiring any additional sensors. As a first step towards



Figure 3: Control at Re = 100: (a) flow field at a particular instant, which is marked in parts (b-e); (b-d) transverse velocity at three
locations, which are indicated in part (a). The measurement used for control is shown in (c), and (e) shows the feedback control signal.

this goal, we investigate the estimation problem at a Reynolds
number of 45. We require two things to perform the estima-
tion problem. The first is a suitable reduced-order model. The
second is a dynamic estimator.

In the previous sections, we were interested in only a single
sensor measurement, and so our model had a single input and
a single output (see figure 1). In this section, we still have a
single input, but the output—the entire flow field—is of much
higher dimension. There are 220 grid points in the radial direc-
tion and 256 grid points in the circumferential direction, which
together make for 56320 output locations. This is not tractable.
We might decide to restrict our attention to a particular part of
the domain, but even then we will have of the order of tens of
thousands of outputs. To make the problem tractable, we reduce
the number of outputs by computing their leading POD modes.
We still use the ERA to find the reduced-order model. The pro-
cedure to find the reduced-order model is as follows. Perform
an impulse response simulation as before, taking the entire field
as the outputs; compute the leading POD modes of these out-
puts; and use the time-varying POD coefficients as the output
used by the ERA. Due to the high dimension of the full field,
we use the method of snapshots to compute the POD modes.
We use 27 POD modes, which is sufficient to capture 99.99%
of the energy in the wake’s impulse response. Using the POD
coefficients, together with the single sensor location, as our out-
put, we have a total of 27+1 = 28 outputs.

Our task now is to estimate the 27 POD coefficients using only
values of the velocity at our sensor location. We can achieve
this using a dynamic estimator, which is often referred to as an
observer or simply an estimator in the control community. For
a state-space model of the form (1), an observer uses knowledge
of the input, u(t), and of the output, y(t), to determine an esti-
mate of the state, x̂(t), and an estimate of the output, ŷ(t), using

x̂(t) = Ax̂(t)+Bu(t)+L[y(t)− ŷ(t)] (2a)
ŷ(t) =Cx̂(t). (2b)

This system mimics the original state-space model (1), but is
also forced by the output error [y(t)− ŷ(t)] via the observer gain
matrix L. We will use a specific type of observer: the Kalman
filter, which amounts to a particular choice of the observer gain
matrix L. This choice of L is optimal in the sense that the er-
ror converges in the presence of stochastic disturbances d and
measurement noise n, which are each assumed to be zero-mean,
Gaussian, white-noise processes. (We add disturbances d to the
control signal, and noise n to the sensor measurement in this
section.)

Results of the estimator for the Re = 45 wake are shown in fig-
ure 4. Even in the presence of unknown disturbances, d, and
measurement noise, n, the Kalman filter performs remarkably
well in estimating the full flow field. This is demonstrated in
figure 4 for a region of the full flow at a particular instant in
time; and as a function of time at three specific points in the
flow.

Conclusions

This study has considered the estimation and control of the
cylinder wake at low Reynolds numbers. In the first part, model-
based control using a single sensor measurement has been con-
sidered. This single sensor acts both as the feedback signal and
as the quantity to be controlled. At a Reynolds number of 60,
the model-based controller performs significantly better than a
trial-and-error-based proportional feedback gain. Furthermore,
the model-based control approach eliminates vortex shedding
at a higher Reynolds number of 100. However, control at this
higher Reynolds number is more challenging with a single sen-
sor, owing to the larger region of absolute instability. Simply
placing the sensor further downstream will help to alleviate this
problem, but introduces problems of its own. In particular, the
convective nature of the flow means that a sensor placed too
far downstream introduces a time delay which is unacceptably
large. These challenges with single-sensor-based control helped
motivate the second part of the study, which looked at the esti-
mation of the full flow field using a single sensor measurement.
To achieve this a Kalman filter was used, and excellent results



Figure 4: Estimation of the flow field at Re = 45: (a) the true flow field; and (b) the estimated flow field at a particular instant in time.
(c-e) show the transverse velocity at the three locations indicated in (a,b). Both the true (—-) and estimated values (−−) are shown.
(Notice that the measured velocity in (d), despite being measured, is also estimated.)

were seen. The natural next step is to use an estimator-based
control scheme, where the estimated flow field is used as the in-
put to the feedback controller. In this case a single measurement
is still used for control. However, it distinguishes itself from the
control schemes considered in this paper in one important way:
that the control actions are based on (the estimate of) what is
happening in the full domain.
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