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Abstract 

It is now well-known that chaotic advection in laminar flow 
significantly impacts scalar transport – heat, mass and residence 
time distribution (RTD).  In context of twisted pipes, such 
phenomena are relevant to a wide range of applications which 
demand rapid heat and mass transport ranging from micro-
fluidics and continuous chemical processing to bioreactors.  A 
general theoretical framework linking the three modes of 
transport was described and applied to optimise the performance 
of a twisted pipe in terms of mixing, heat transfer and ability to 
produce a narrow RTD. The work indicates that it is possible to 
optimise all three aspects of the twisted pipe in a single analysis.   

Introduction  

Chaotic advection in laminar flow provides a transport 
mechanism for scalars such as heat and mass with similar 
characteristics to that of turbulent flow [3, 5].  Mass and heat 
transfer may be readily accelerated, whilst RTD variance is 
suppressed, all of which are highly beneficial for a wide range of 
engineering applications in the laminar flow regime.  In flow 
chemistry, for example, accelerated heat and mass transport 
respectively are critical for improving mixing and achieving 
better control of process temperature, whilst product uniformity 
is directly related to narrowness of the RTD. As many 
engineering processes require all three modes to be 
simultaneously optimised, there exists a direct need to understand 
how this might be achieved in chaotic flows. 

There exists a deep connection between the three transport modes 
(heat, mass, RTD) which points to a new methodology for 
simultaneous optimisation.  In this study, we use the twisted pipe 
flow [3, 12, 25] as a prototypical example to both demonstrate 
the underlying concepts and perform an optimisation process.  
We consider how the eigenmode structure in a twisted pipe 
controls both transverse and axial scalar dispersion, leading to a 
framework under which global optimisation is possible.  

Background 

The twisted pipe flow comprises of a series of pipe bends 
connected in series with an angular offset (i.e. twist) between two 
consecutive bends (Figure 1).  At certain Reynolds number, fluid 
passing through any bend induces a secondary flow that arises as 
the faster fluid stream near the pipe axis moves towards the 
concave side of the bend [6], resulting in the well-known 
formation of counter rotating vortices [7, 8] known classically as 
Dean roll cells.  This produces periodic re-orientation of the flow 
which is critical for sustaining chaotic advection in the pipe.   

Jones et al. [12] found that the twist angle has considerable effect 
on transverse scalar transport, specifically that such particular 
twist angles can generate chaotic mixing within the twisted pipe 
flow.  The twisted pipe flow falls into a wide class of periodically 
reoriented duct flows, e.g. RAM [15], SMW mixer [23], etc, 

which has received widespread attention. Various other studies 
have looked into different twisted pipe configurations to optimise 
chaotic mixing and heat transfer, for example [1, 18, 19, 25].  At 
certain twist angles, reorientation of the secondary flow 
repetitively stretches and folds the trajectories of fluid particles, 
producing exponential separation of neighbouring fluid particles 
and highly striated material distributions.  This process is the 
hallmark of chaotic advection, and leads to highly efficient 
mixing.   

In conjunction with chaotic advection, thermal or molecular 
diffusion transport acts to impart significantly accelerated 
irreversible dispersion, leading to rapid heat and mass transfer.  It 
is known that enhanced transverse dispersion and hence mixing 
suppresses axial dispersion [13], leading to a narrower RTD [3, 
21].  This suggests a deep connection between chaotic mixing 
and RTD as demonstrated indirectly by Mezić et al. [17] who 
related RTD to Poincaré map in pipes. 

Theory 

Twisted pipe flow is described as a periodically reoriented duct 
flow with axial coordinate z which aligns with the direction of the 
bulk flow, and transverse coordinates (r,θ).  The 3D periodic 
velocity field u(x) can be written as 

���, �, � + �	 = ��
���, �, �	�   (1) 

where Rθ is a rotation operator about the z-axes, and x = r,θ,z 
forms an orthogonal coordinate system.  Transport of scalars 
such as heat and mass in this flow can be described by the 
dimensionless steady advection-diffusion equation (ADE) for the 
scalar quantity φ representing heat or mass concentration 
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where Pe is Peclet number for heat scalar ADE, and is replaced 
with Schmidt number (Sc) for mass scalar AED; S is a domain 
source. The ADE (2) is subject to the initial condition φ(r,θ,0) = 
φ0, and either Dirichlet or Neumann boundary conditions 
respectively at the pipe wall: 
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The Dirichlet boundary condition (3) corresponds to problems 
with a fixed value at wall, e.g. wall heating.  The Neumann 
boundary condition (4) represents zero flux condition at the wall, 
e.g. mass transport and RTD evolution.  The probability density 
function (PDF) P of the residence time is given by an unsteady 
ADE [24] 
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with s being age of the fluid particles.  This is remarkably similar 
to equation (2).  It demonstrates a close connection between 
axial/transverse dispersion and RTD similar to that exists for 
Taylor-Aris dispersion.   

Based on Liu and Haller [16], Lester et al. [14] established that, 
for a spatially periodic flow where u(z) = u(z + L), the solution to 
the ADE with S(x) = f1(x) = f2(x) = 0 is the sum of a finite 
number of strange eigenmodes (so-called as the eigenmodes have 
non-trivial structure in the limit Pe→∞) 
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where < > denotes averaging over cross-section; αk weighting 
functions to be determined from the initial conditions φ0; λk the 
(possibly complex) decay rate; ψk(r,θ,z) the kth strange 
eigenmode; O an arbitrary small fast decaying term.  With 
reference to [15] who have solved ADE (2) based on similar 
boundary conditions, the eigenmodes depend on the type of wall 
boundary conditions used (i.e. condition (3) or (4)).  They are, 
however, insensitive to values of S , f1 and f2≠0.   Also, non-zero 
S and arbitrary values of f1 and f2 all produce asymptotic transport 
that is governed by λ0.    

Splitting φ into a fully-developed part � and a zero-mean part �3 
and ignoring the O term leads to 

�3��, �, �	 = ∑ ()*+,-./)��, �, �	0)�%   (7) 

With eigenmodes ordered such that |5)| < |5)6�|.  For a pipe of 
finite length, equation (6) thus suggests that the slowest decaying 
eigenmode corresponding to k=0 dominates as z increases and 
can be approximated as 

789.→; �3��, �, �	 → (%*+,<./%��, �, �	  (8) 

where ψ0 is the dominant eigenmode and λ0 the associated decay 
rate.  Hence, λ0 solely controls asymptotic transport of scalars 
and can be used to optimise heat and mass transfer in processes 
based on chaotic advection.  We demonstrate this approach in 
this paper. 

Problem Description 

Strange eigenmode decomposition suggests that in an axially 
periodic flow such as that in a twisted pipe, a passive scalar (e.g. 
mass or heat) transport is asymptotically governed by λ0, 
generating a convenient basis for optimization.  For mass 
transport and heat transfer cases based on Neumann boundaries, 
the eigenmodes for both processes are the same.  Hence, 
optimisation can be performed simultaneously.  This approach, 
however, is not applicable to mass and heat transport under 
Dirichlet boundary conditions.  Optimisation will then need to 
consider eigenmodes for mass and heat transport separately. 

To verify this, we set out to numerically solve fluid motion and 
scalar transport in a twisted pipe to simulate the following 
scenarios: 

1. Internal mixing with homogeneous Neumann boundary 
condition (4) and f2=0; 

2. Constant temperature wall heating with Dirichlet 
boundary condition (3) f1=1; 

3. RTD with homogeneous Neumann boundary condition 
f2=0, and S=1. 

To monitor the evolution of passive scalar variance and calculate 
its decay rate, a mixing index ζ(φ) is defined as   
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where φ denotes a scalar.  For the internal mixing case, = is one at 
the inlet and approaches zero as z→∞.  Thus, = quantifies 
homogeneity of φ at a given cross-section of the twisted pipe.  
The same applies to the wall heating and RTD cases, however, = 
can become infinitely large at the inlet where <φ> = 0.  

The twisted pipe considered in this work consists of 24 identical 
90° bend elements connected in series, each having a radius a of 
15 mm and a turning radius R of 60 mm, yield bend ratio a/R = 
1/4 (Figure 1).  In forming a twisted pipe, the symmetry plane of 
each bend element is rotated by a constant twist angle ϕ away 
from its upstream counterpart along the z-axis.  By adjusting ϕ, 
the twisted pipe can be configured into a coiled shape for ϕ = 0° 
(Figure 1b) and eventually turning into an undulating pipe for ϕ = 
180° (Figure 1c). 

 

Figure 1. Twisted pipe geometry. a) coordinate system (r, θ, z) of a single 
bend element; b) coil configuration; b) undulating pipe configuration. 

CFD simulations focused on the laminar flow regime with Dean 
number ranging from 100 to 1000, corresponding to a range De > 
106 where four-vortex Dean rolls were observed in curved square 
duct [11].  For each value of Dean number De, we considered 
twist angles between 10° and 180°, where 

E* = �*FG/�      (10) 

We are limiting our attention to Pe = 105 condition for all three 
scenarios where diffusion of the solute in the solvent is slow 
compared to convection, and hence chaos play a strong role in 
mixing. 

Numerical Method 

Fluid Mechanics 

Flow of an incompressible Newtonian fluid passing through a 
twisted pipe under laminar condition at steady-state was solved 
using CFD.  Mixing as represented by the diffusive transport of a 
passive scalar φ is also solved.  The present work considers three 
scalars: normalised dye concentration C, normalised temperature 
T and residence time RT.  The first two quantities range between 
0 and 1.   

Initial and Boundary Conditions 

Fully-developed laminar flow properties are obtained from a 
separate straight pipe simulation and specified at the inlet of the 
twisted pipe.   

For φ = T or RT, φ(r, θ, 0) = 0 was applied at the inlet.  For the 
internal mixing case (i.e. φ = C), the solute (C = 1) was initially 
separated from the solvent (C = 0) at the inlet as described by 

���, �, 0	 = J1, � ≤ M
0, � > M�    (11) 

At the wall, no-slip condition was prescribed for the flow field. 
Neumann condition was applied for scalars C and RT.  For scalar 
T, Dirichlet condition was used, i.e. 

���, �, �	 = 1      (12) 

a) 

c) 



Numerical Accuracy and Post Process 

A uniform hexahedral mesh with 0.2 mm cells was constructed 
for the twisted pipe.  This is expected to produce less than 3% 
error in the solution as suggested by a grid sensitivity study.  

It was necessary to apply a residual value of 10-8 to all equations 
as required by [10]. 

The DMD algorithm of Schmid [22] was used to extract the 
dominant eigenmodes ψk(r,θ,z) and the corresponding 
eigenvalues λk from scalar distributions predicted by CFD.   

Results and Discussions 

Results of the twisted pipe simulations are compared to that of a 
straight pipe which represents a simplified tubular reactor which 
is widely used in flow chemistry.  Note that length of the straight 
pipe is equivalent to the combined arc lengths of individual 
bends.  

Internal Mixing 

Mixing indices as defined in equation (8) were calculated for 
concentration scalar C at outlet planes of each bend elements, as 
shown for De = 1000 in Figure 2.  The result indicates an 
exponential decay of ς(C) over a large portion of the pipe length, 
suggesting that the local variance of C is falling asymptotically 
towards zero and therefore only dominant mode is present.  
Re(λ0) determined from the slopes of the curves in Figure 2 are 
the highest for twist angle 180°, i.e. ϕ = 180° case.  It is -5.4 m-1.   
λ0 increases with twist angle, particularly when ϕ > 90°.  This is 
due to flow reversion which arises from periodic re-orientation of 
the bend.  At ϕ = 180°, Dean roll cells produced by a previous 
bend are forced to reverse directions in the following bend, 
causing significant folding and stretching of the filaments and 
thus strong mixing.   For a straight pipe, the mixing index also 
decays asymptotically but more than 400 times slower. 

Cross-sectional distributions of C for the ϕ = 180° case under the 
same condition are shown in Figure 3.  Within the first four 
bends, the roll cells are clearly visible. Note that the mixing 
patterns between Bend 5 and 9 appear to switch periodically with 
Bends 5 and 7, and Bends 6 and 8 showing strong resemblance.  
This suggests a complex λ0. 

DMD results are shown in Figure 4.  It confirmed sub-harmonic 
or quasi-periodic nature of the dominant eigenmode which has a 
complex λ0 of (-5.82, 24.71) m-1.  Its real part is in good 
agreement with that determined from Figure 2 (i.e. -5.4 m-1).   

Wall Heating 

Compared to internal mixing, transport of heat with a Dirichlet 
boundary is much slower due to weak time-dependence in the 
thermal boundary layer [9].  However, it did show a log-linear 
relation with z for the De and ϕ ranges tested (Figure 5).  For the 
De = 1000, ϕ = 160° case which produced the strongest decay, 
Re(λ0) is -0.0585 m-1 compared to -0.00715 m-1 for the straight 
pipe.  This is an improvement by a factor of more than 8. 

Predicted transverse transport of heat scalar T is shown in Figure 
6.  The process is initiated by a local thickening of the thermal 
boundary layer near where the counter-rotating wall streams 
impinge onto each other and create a stagnant region at the wall.  
This is a direct consequence of a constant temperature boundary 
(Dirichlet condition) which acts to continually increase non- 
uniformity in the distribution of heat scalar.  Unlike the case with 
a Neumann boundary, the DMD analysis here produced a 
positive λ0 of (0.103, 0) m-1, suggesting a growth of the dominant 
eigenmode.  It also gave a λ1 of (-0.51153, 0) m-1 whose real part 
is significantly larger than -0.0585 m-1. It is thus possible that the 
flow in the considered twisted pipe is still developing towards the 

 

Figure 2. Predicted spatial evolution of mixing index of concentration 
scalar C for straight and undulating pipes at De = 1000. 

 
Figure 3. Top: Predicted cross-sectional distributions of C for the first 9 
bends in the undulating pipe (De = 1000, ϕ = 180°); Bottom: Geometric 
configuration of the bend elements with respect to the inlet. 

 

Figure 4. Left: DMD spectrum for the De = 1000, ϕ = 180° case; Right: 
dominant eigenmode corresponding to eigenvalue (-5.82, 24.71) m-1. 

dominant eigenmode.  This points to a need for extending the  
twisted pipe in the simulation.  It is interesting to note a 
consistent pattern emerges in Bends 9 to 17 in Figure 6, and this 
is agrees with the λ1 eigenmode as produced by the DMD. 

Not all De and ϕ combinations tested produced positive λ0.  The 
De = 100, ϕ = 15° case, for example, gave a λ0 of (-0.03125, 0) 
m-1. 

Residence Time 

Residence times predicted by the end of the twisted pipes are 
compared for selected De in Figure 7.  Note both E and RT 
quantities were normalised by mean residence time for a straight 
pipe under the same conditions.  The theoretical curve refers to 
the classical result of a RT-3 tail for an ideal laminar straight tube 
flow [20].  For the straight pipe, discrepancies from the classical 
solution were due to the presence of a weak diffusion transport in 
the flow field.   

It is evident that the RTD range is much narrower in twisted 
pipes compared to a straight pipe, and this tendency grows with 
increasing twist angle.  With reference to Figure 2, this is directly 
associated with stronger transverse dispersion which produced 
rapid decay of  ς(C) and suppressed axial dispersion at large twist 
angles.  The numerical results thus support the notion that the 
transverse mixing eigenmodes govern RTD evolution, and both 
processes can be optimised simultaneously with the dominant 
eigenvalue λ0 for internal mixing.  According to Figure 7, the 
twisted pipe sharpened the RTD by at least 40% compared to a 
straight pipe.  At De = 1000, up to 70% of RTD sharpening is 
attainable with a large twist angle. 
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Figure 5. Predicted spatial evolution of mixing index of T for straight and 
undulating pipes at De = 1000. 

 
Figure 6. Top: Predicted cross-sectional distributions of T for selective 
bends in the twisted pipe (De = 1000, ϕ = 160°); Bottom: Geometric 
configuration of the bend elements with respect to the inlet. 

 
Figure 7. Predicted residence time distributions by the end of the twisted 
pipes (De = 1000). 

Conclusions 

Results from the present analysis support the theory [15] and 
illustrate the applicability of the dominant eigen value in 
optimising a laminar flow device.  Using a twisted pipe as an 
example, we have demonstrated the connection between the 
dominant eigenmode for mixing and RTD evolution.  Hence one 
can optimise the eigenmodes for mixing and expect to achieve 
the optimal RTD at the same time.   

For pipes subject to a constant temperature, i.e. with Dirichlet 
boundary, no-slip condition at the wall dominates the transport of 
heat scalar.  Hence, the process is controlled by a separate set of 
dominant eigenmodes.  Pipes subject to a constant heat flux, i.e. 
with Neumann boundary, were not investigated.  However, 
according to Lester et al. [15] and our result for RTD which is 
based on the same boundary condition, the heat transport process 
should also follow the mixing eigenmodes and hence can be 
optimised simultaneously. 

The findings above provide basis for simultaneously optimising 
mass transport, heat transfer and RTD for a laminar flow device.  
This points to new possibilities in the design of a new generation 
of more efficient flow devices.  
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