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Abstract

It is now well-known that chaotic advection in laai flow
significantly impacts scalar transport — heat, mass residence
time distribution (RTD). In context of twisted pgesuch
phenomena are relevant to a wide range of appitsitivhich
demand rapid heat and mass transport ranging frdotom
fluidics and continuous chemical processing to dactors. A
general theoretical framework linking the three e®dof
transport was described and applied to optimisepdréormance
of a twisted pipe in terms of mixing, heat transded ability to
produce a narrow RTD. The work indicates that passible to
optimise all three aspects of the twisted pipe $éingle analysis.

Introduction

Chaotic advection in
mechanism for scalars such as heat and mass witHarsi
characteristics to that of turbulent flow [3, 5Mass and heat
transfer may be readily accelerated, whilst RTDiarare is

suppressed, all of which are highly beneficialdoride range of
engineering applications in the laminar flow regimén flow

chemistry, for example, accelerated heat and masssgort
respectively are critical for improving mixing arathieving

better control of process temperature, whilst pobdwniformity

is directly related to narrowness of the RTD. As ngna
engineering processes require all three modes to

simultaneously optimised, there exists a directineainderstand
how this might be achieved in chaotic flows.

There exists a deep connection between the traesgort modes
(heat, mass, RTD) which points to a new methodoldgy

simultaneous optimisation. In this study, we usettvisted pipe
flow [3, 12, 25] as a prototypical example to bamonstrate
the underlying concepts and perform an optimisapoocess.
We consider how the eigenmode structure in a tdigigpe

controls both transverse and axial scalar disperdeading to a
framework under which global optimisation is po#sib

Background

The twisted pipe flow comprises of a series of pipends
connected in series with an angular offset (i.éstjvbetween two
consecutive bends (Figure 1). At certain Reynoldsber, fluid
passing through any bend induces a secondary fatvarises as
the faster fluid stream near the pipe axis movesgatds the
concave side of the bend [6], resulting in the kalbwn
formation of counter rotating vortices [7, 8] knowtassically as
Dean roll cells. This produces periodic re-oritiotaof the flow
which is critical for sustaining chaotic advectiorthe pipe.

Jones et al. [12] found that the twist angle hasiterable effect
on transverse scalar transport, specifically thathsparticular
twist angles can generate chaotic mixing within tihisted pipe
flow. The twisted pipe flow falls into a wide ctasf periodically
reoriented duct flows, e.g. RAM [15], SMW mixer [23tc,

laminar flow provides a tramspo

be

which has received widespread attention. Variolrerostudies
have looked into different twisted pipe configuoats to optimise
chaotic mixing and heat transfer, for example B, 19, 25]. At
certain twist angles, reorientation of the secondéiow
repetitively stretches and folds the trajectoriédlad particles,
producing exponential separation of neighbourinddflparticles
and highly striated material distributions. Thigess is the
hallmark of chaotic advection, and leads to higelficient
mixing.

In conjunction with chaotic advection, thermal ooletular
diffusion transport acts to impart significantly caterated
irreversible dispersion, leading to rapid heat arass transfer. It
is known that enhanced transverse dispersion andehmixing
suppresses axial dispersion [13], leading to aomar RTD [3,
21]. This suggests a deep connection between ichanixing
and RTD as demonstrated indirectly by Meet al. [17] who
related RTD to Poincaré map in pipes.

Theory

Twisted pipe flow is described as a periodicallgriented duct
flow with axial coordinate which aligns with the direction of the
bulk flow, and transverse coordinatasd. The 3D periodic
velocity fieldu(x) can be written as

u(r,0,z+ L) = Rglu(r, 6, 2)] Q)

whereRg is a rotation operator about tlzeaxes, andk =r,6z
forms an orthogonal coordinate system. Transpbrscalars
such as heat and mass in this flow can be desctiyethe
dimensionless steady advection-diffusion equatiibE) for the
scalar quantityprepresenting heat or mass concentration

@)

where Pe is Peclet number for heat scalar ADE,isamdplaced
with Schmidt number (Sc) for mass scalar AEDis a domain
source. The ADE (2) is subject to the initial cdinti ¢r,6,0) =
@, and either Dirichlet or Neumann boundary condgio
respectively at the pipe wall:

v (ug) = -72¢ +5(x)

Olror = () ®)
o =hw (@)

The Dirichlet boundary condition (3) correspondsptoblems
with a fixed value at wall, e.g. wall heating. Theumann
boundary condition (4) represents zero flux conditat the wall,
e.g. mass transport and RTD evolution. The proibalensity

function (PDF)P of the residence time is given by an unsteady

ADE [24]

_BP

V- (uP) =—-V2P —= (5)



with s being age of the fluid particles. This is rematiesimilar
to equation (2). It demonstrates a close connectietween
axial/transverse dispersion and RTD similar to tesists for
Taylor-Aris dispersion.

Based on Liu and Haller [16], Lester et al. [14]abdished that,
for a spatially periodic flow where(z) = u(z + L), the solution to
the ADE with S(x) = fi(x) = f)(x) = 0 is the sum of a finite
number of strange eigenmodes (so-called as thereigges have
non-trivial structure in the limit Pg o)

K
¢(r,0,2) =< ¢y > + Z are 4y (r,0,2) + 0(e~P?)
k=0

(6)

where < > denotes averaging over cross-sectigmnyveighting
functions to be determined from the initial corafi$ ¢; A, the
(possibly complex) decay ratey(r,6z) the kth strange
eigenmode;O an arbitrary small fast decaying term. With
reference to [15] who have solved ADE (2) basedsomilar
boundary conditions, the eigenmodes depend ornypgeedf wall
boundary conditions used (i.e. condition (3) or).(4hey are,
however, insensitive to values 8f, f; andf,#20. Also, non-zero
Sand arbitrary values &f andf, all produce asymptotic transport
that is governed bi,.

Splitting ginto a fully-developed pag and a zero-mean paft
and ignoring thé term leads to

(5(7', 0, Z) = ZIIS:O ake_lkzwk (T', 9' Z) (7)

With eigenmodes ordered such tht| < |A;41|. For a pipe of
finite length, equation (6) thus suggests thatstbevest decaying
eigenmode corresponding &0 dominates agz increases and
can be approximated as

limyoe @(r,0,2) = age %Yy (1,0, 2) (8)

where ¢ is the dominant eigenmode aAglthe associated decay
rate. Henced, solely controls asymptotic transport of scalars
and can be used to optimise heat and mass transfeocesses
based on chaotic advection. We demonstrate ttpsoaph in
this paper.

Problem Description

Strange eigenmode decomposition suggests that iaxaly
periodic flow such as that in a twisted pipe, aspeasscalar (e.g.
mass or heat) transport is asymptotically goveriosd Aq,
generating a convenient basis for optimization. r Faass
transport and heat transfer cases based on Neubtamuaries,
the eigenmodes for both processes are the samenceHe
optimisation can be performed simultaneously. Tdpgroach,
however, is not applicable to mass and heat trahspader
Dirichlet boundary conditions. Optimisation wilhén need to
consider eigenmodes for mass and heat transpateaely.

To verify this, we set out to numerically solveilunotion and
scalar transport in a twisted pipe to simulate fbokowing
scenarios:

1. Internal mixing with homogeneous Neumann boundary
condition (4) and,=0;

2. Constant temperature wall
boundary condition (3)=1;

3.  RTD with homogeneous Neumann boundary condition
f,=0, andS=1.

To monitor the evolution of passive scalar variaacd calculate
its decay rate, a mixing ind€X¢ is defined as

heating with Dirichlet

Jp ($i(0)~($))?dx

§(¢) = Jo Up))2dx

)
whereg@denotes a scalar. For the internal mixing casepne at
the inlet and approaches zero asoz Thus, ¢ quantifies
homogeneity ofgp at a given cross-section of the twisted pipe.
The same applies to the wall heating and RTD césmsgever,¢
can become infinitely large at the inlet wherg>-<= 0.

The twisted pipe considered in this work consigt@bidentical
90° bend elements connected in series, each haviadiasa of

15 mm and a turning radil® of 60 mm, yield bend ratie/R =

1/4 (Figure 1). In forming a twisted pipe, the syetry plane of
each bend element is rotated by a constant twigteah away
from its upstream counterpart along thaxis. By adjustingg,

the twisted pipe can be configured into a coileapshforg = 0°

(Figure b) and eventually turning into an undulating pipe# =

18C° (Figure 1c).

a)

Figure 1. Twisted pipe geometry. a) coordinateesyst, 6, z) of a single
bend element; b) coil configuration; b) undulatpige configuration.

CFD simulations focused on the laminar flow reginithvidean
number ranging from 100 to 1000, corresponding tange De >
106 where four-vortex Dean rolls were observediirved square
duct [11]. For each value of Dean number De, wesitiered
twist angles between 1@nd 180, where

De = Re./a/R (20)
We are limiting our attention to Pe =®1€ondition for all three
scenarios where diffusion of the solute in the eptvis slow
compared to convection, and hence chaos play agstale in
mixing.
Numerical Method
Fluid Mechanics

Flow of an incompressible Newtonian fluid passihgotigh a
twisted pipe under laminar condition at steadyestafs solved
using CFD. Mixing as represented by the diffusiems$port of a
passive scalapis also solved. The present work considers three
scalars: normalised dye concentrationnormalised temperature

T and residence time RT. The first two quantitiesggeabetween
Oand 1.

Initial and Boundary Conditions

Fully-developed laminar flow properties are obtdinieom a
separate straight pipe simulation and specifiethatinlet of the
twisted pipe.

For ¢=T or RT, ¢r, 6, 0) = 0 was applied at the inlet. For the
internal mixing case (i.eqp= C), the solute € = 1) was initially
separated from the solver € 0) at the inlet as described by

1, 6<m

$r0.0={; 3" (11)
At the wall, no-slip condition was prescribed fhetflow field.
Neumann condition was applied for scal@rand RT. For scalar

T, Dirichlet condition was used, i.e.
¢(R,60,2) =1 (12)



Numerical Accuracy and Post Process

A uniform hexahedral mesh with 0.2 mm cells wasstarcted
for the twisted pipe. This is expected to prodiess than 3%
error in the solution as suggested by a grid seitgistudy.

It was necessary to apply a residual value & th0all equations
as required by [10].

The DMD algorithm of Schmid [22] was used to extréive
dominant eigenmodes ¢(r,6z2) and the corresponding
eigenvaluesl, from scalar distributions predicted by CFD.

Results and Discussions

Results of the twisted pipe simulations are compéoetiat of a
straight pipe which represents a simplified tubuésactor which
is widely used in flow chemistry. Note that lengihthe straight
pipe is equivalent to the combined arc lengths rafividual

bends.

Internal Mixing
Mixing indices as defined in equation (8) were akdted for

concentration scalat at outlet planes of each bend elements, as

shown for De = 1000 in Figure 2. The result inthsaan
exponential decay af{C) over a large portion of the pipe length,
suggesting that the local variance @fis falling asymptotically
towards zero and therefore only dominant mode issqnt.
Re(\g) determined from the slopes of the curves in FEdirare
the highest for twist angle 180.e. ¢ = 180 case. Itis -5.4 th

Ao increases with twist angle, particularly whgr» 9C°. This is
due to flow reversion which arises from periodiereentation of
the bend. Atg = 18C, Dean roll cells produced by a previous
bend are forced to reverse directions in the falowbend,
causing significant folding and stretching of thkarhents and
thus strong mixing. For a straight pipe, the mixindex also
decays asymptotically but more than 400 times stowe

Cross-sectional distributions 6ffor the¢ = 180 case under the
same condition are shown in Figure 3. Within thvet ffour
bends, the roll cells are clearly visible. Notettllde mixing
patterns between Bend 5 and 9 appear to switchdieaity with
Bends 5 and 7, and Bends 6 and 8 showing strong bémece.
This suggests a complax.

DMD results are shown in Figure 4. It confirmed-sarmonic

or quasi-periodic nature of the dominant eigenmatizh has a
complex A, of (-5.82, 24.71) m. Its real part is in good
agreement with that determined from Figure 2 (bet m?).

Wall Heating

Compared to internal mixing, transport of heat vattDirichlet
boundary is much slower due to weak time-depend@mdbe
thermal boundary layer [9]. However, it did showog-linear
relation withz for the De andp ranges tested (Figure 5). For the
De = 1000,¢ = 16C case which produced the strongest decay,
Re(\) is -0.0585 rit compared to -0.00715 Hhior the straight
pipe. This is an improvement by a factor of mdrant 8.

Predicted transverse transport of heat scaiarshown in Figure
6. The process is initiated by a local thickenafghe thermal
boundary layer near where the counter-rotating wsaléams
impinge onto each other and create a stagnantrregithe wall.
This is a direct consequence of a constant temperéioundary
(Dirichlet condition) which acts to continually ie@ase non-
uniformity in the distribution of heat scalar. likd the case with
a Neumann boundary, the DMD analysis here produaed
positive, of (0.103, 0) i, suggesting a growth of the dominant
eigenmode. It also gaveha of (-0.51153, 0) m whose real part
is significantly larger than -0.0585mlt is thus possible that the
flow in the considered twisted pipe is still dev@lg towards the
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Figure 2. Predicted spatial evolution of mixing eémdof concentration
scalar C for straight and undulating pipes at O€60.
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Figure 3. Top: Predicted cross-sectional distringiofC for the first 9
bends in the undulating pipe (De = 10@0+ 18C); Bottom: Geometric
configuration of the bend elements with respet¢héoinlet.
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Figure 4. Left: DMD spectrum for the De = 10@0= 180 case; Right:
dominant eigenmode corresponding to eigenvalu8;24.71) ni.

dominant eigenmode. This points to a need fornahtey the
twisted pipe in the simulation. It is interesting note a
consistent pattern emerges in Bends 9 to 17 in Eiguand this
is agrees with th&; eigenmode as produced by the DMD.

Not all De andg combinations tested produced posithge The

De = 100,¢ = 15° case, for example, gavehg of (-0.03125, 0)
-1

m-.

Residence Time

Residence times predicted by the end of the twigipds are
compared for selected De in Figure 7. Note bothnd RT
quantities were normalised by mean residence tona ftraight
pipe under the same conditions. The theoreticalecrefers to
the classical result of a FTail for an ideal laminar straight tube
flow [20]. For the straight pipe, discrepanciesnfrthe classical
solution were due to the presence of a weak ddfusiansport in
the flow field.

It is evident that the RTD range is much narrowernwisted
pipes compared to a straight pipe, and this tendgmows with
increasing twist angle. With reference to Figuréhis is directly
associated with stronger transverse dispersion hwproduced
rapid decay of¢(C) and suppressed axial dispersion at large twist
angles. The numerical results thus support theomdhat the
transverse mixing eigenmodes govern RTD evolutiowl, Both
processes can be optimised simultaneously withdiminant
eigenvalue), for internal mixing. According to Figure 7, the
twisted pipe sharpened the RTD by at least 40% coedpt® a
straight pipe. At De = 1000, up to 70% of RTD geening is
attainable with a large twist angle.
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Conclusions

Results from the present analysis support the th§dsy and
illustrate the applicability of the dominant eigeralue in
optimising a laminar flow device. Using a twistpgpe as an
example, we have demonstrated the connection betlee
dominant eigenmode for mixing and RTD evolution. nek one
can optimise the eigenmodes for mixing and expecchieve
the optimal RTD at the same time.

For pipes subject to a constant temperature, it irichlet
boundary, no-slip condition at the wall dominates transport of
heat scalar. Hence, the process is controlled $gparate set of
dominant eigenmodes. Pipes subject to a consaitflux, i.e.
with Neumann boundary, were not investigated. Hane
according to Lester et al. [15] and our result RIFD which is
based on the same boundary condition, the heapoainprocess
should also follow the mixing eigenmodes and hecae be
optimised simultaneously.

The findings above provide basis for simultaneowglyimising
mass transport, heat transfer and RTD for a lanfloar device.
This points to new possibilities in the design afeav generation
of more efficient flow devices.
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