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Abstract

In this study, we provide a mathematical description of the on-
set of counter-rotating circular vortices observed for a family
of slender rotating cones (of half-angles 15◦, 30◦ and 45◦) in
quiescent fluid. In particular, we apply appropriate scalings
and apply a change of coordinates, accounting for the effects
of streamline curvature. A combined large Reynolds number
and large vortex wavenumber analysis is used to obtain an es-
timate for the asymptotic right-hand branch of neutral stabil-
ity for the family of slender rotating cones. Existing experi-
mental and theoretical studies are discussed which lead to the
clear hypothesis of a hitherto unidentified convective instability
mode that dominates within the boundary-layer flow over slen-
der rotating cones. The mode manifests as Görtler-type counter-
rotating spiral vortices, indicative of a centrifugal mechanism.
Although a formulation consistent with the classic rotating-disk
problem has been successful in predicting the stability charac-
teristics over broad cones, it is unable to identify such a centrifu-
gal mode as the half-angle is reduced. An alternative formula-
tion is developed and the governing equations solved using both
short-wavelength asymptotic and numerical approaches to in-
dependently identify the centrifugal mode. Our results confirm
our earlier predictions pertaining to the existence of the new
Görtler mode and capture the effects of the governing centrifu-
gal instability mechanism. Meanwhile, favourable comparisons
are drawn between numerical and asymptotic neutral stability
curve predictions.

Introduction

This paper describes recent advances in the study of boundary-
layer transition over rotating cones. In particular, we are con-
cerned with the distinct convective instability mechanisms that
dominate within the boundary layers over slender and broad
rotating cones. Our interest in rotating cones is motivated by
the flow around nose cones in aeroengine and spinning projec-
tile applications. Here laminar–turbulent transition within the
boundary layer can lead to significant increases in drag which
has negative implications for fuel efficiency and control. Alter-
natively, turbulent flow can be encouraged as a means of heat
transfer in situations where unwanted heat is generated, for ex-
ample in re-entry. In any event, a complete understanding of
the transition of such flows could lead to modifications in design
and significant cost savings in aerospace technologies. It is clear
that the linear-stability analyses presented here for cones rotat-
ing within incompressible and otherwise still fluids are of lim-
ited direct relevance in terms of these motivating applications.
However, previous studies including [3, 5, 6] have shown that
there is a close link between the rotating disk and cone problems
in still fluid and axial flow. Hence, the current still fluid study
forms an important stepping stone to analysing the more com-
plex problem where axial flow is introduced. More generally,

this work should be considered as a further step towards fully
classifying the instability mechanics within the global class of
boundary layer flows over rotating bodies. Indeed, studies of
the effects of enforced axial flow over broad cones and disks
have already been published, [1, 3, 5, 6].

Formulation

We use coordinate axes aligned with the spiral vortices and with
origin O′ placed at the local position of the analysis. As shown
in figure 1, the x̂∗-axis coincides with the direction of propa-
gation of the spiral vortices aligned with the effective veloc-
ity direction. Alternatively, the y∗- and z∗-axes are mutually
orthogonal and run in the tangential and surface-normal direc-
tions, respectively (where a ∗ denotes a dimensional quantity
in all that follows). The resulting coordinate system (x̂∗,y∗,z∗)
rotates with the cone surface at constant angular frequency Ω?.
Importantly, the logarithmic spirals are directed such that the
y∗-axis has a positive projection with respect to the direction of
rotation of the cone. This requires that the x̂∗-axis has positive
projection onto the axis of rotation and the y∗-axis to have neg-
ative projection. The spiral vortices are orientated at an angle
φ relative to the circle formed from the planar cross-sectional
normal to the axis of rotation of the cone.

The governing dimensional Navier–Stokes equations are then
derived in this co-ordinate system with appropriate scale fac-
tors. We non-dimensionalise lengths on a characteristic distance
along the cone l∗, so that x̂∗ = l∗x̂ and y∗ = l∗y. Furthermore,
we scale both logarithmic coordinates x̂ and y, as well as the
normal coordinate z∗, on the boundary-layer thickness, leading
to the scaled coordinate system (x̌, ȳ,η) = R1/2(x̂,y,z) where R
is the Reynolds number. This scaling enables the vortex struc-
ture in both logarithmic directions to be analyzed at the same or-
der as the length scale in the surface-normal direction, which is
another important difference from our previous formulation in
[2]. We assume that the spiral waves are periodic in the effective
velocity direction and introduce periodicity into the perturba-
tion quantities of vortex x̌-wavenumber a and ȳ-wavenumber b.
Scaling our perturbing quantities on the boundary-layer thick-
ness, we introduce a perturbed flow of the form

ũ∗ = Ω
∗l∗ sinψ[{xŨ(η;φ),xṼ (η;φ),R−

1
2 W}

+ R−
1
2 {ũ(η), ṽ(η), w̃(η)}exp(iax̌+ ibȳ)]. (1)

where x is streamwise direction over the cone, scaled on l∗ (see
[2], for example). We note that these scalings remove ψ from
the governing equations.

Full details of the mathematical derivation of the governing per-
turbation equations are given in [5] and we arrive at the govern-
ing stability equations stated in §5.2.1 [5]. We note that the gov-
erning equations are considerably more complicated than those
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Figure 1. Diagram of spiral vortex instability of a rotating cone, showing conventional streamwise, aziumthal and surface-normal
coordinates (x,θ,z) defined in [2], as well as the shifted logarithmic spiral coordinates (x̂,θ) (left). Also included is a detailed physical
interpretation (right) showing the streamwise, azimuthal and effective velocity directions U . Note that α0 and β0/r refer to wavenum-
bers in the streamwise and azimuthal directions of the previous formulation [2], whereas the logarithmic spiral coordinate x̂ coincides
with the effective velocity direction U .

considered under the previous broad cone formulation [2] and
this is a consequence of the different spatial scalings used here.

Asymptotic Analysis

The governing equations are solved to determine leading- and
next-order estimates of a scaled Taylor number for neutrally-
stable modes. The asymptotic approach follows [4] for the Tay-
lor problem of flow between concentric rotating cylinders. In-
deed, for slender rotating cones, ψ is sufficiently small that the
formulation resembles that for flow moving axially over a ro-
tating cylinder. The Taylor number in this formulation is given
by

T =
2cotψcosφ

sin5
ψ

. (2)

We consider it to be a function of ψ and parameterised by the
particular φ under consideration. The expression is such that T
increases with decreased ψ and can be considered as a measure
of cone slenderness for particular φ. The Taylor number can
be thought of as characterizing the importance of centrifugal
forces relative to viscous forces, and is closely related to the
Görtler number, which has been used to describe centrifugal
instabilities, for example in fully developed and boundary layer
flows by [4]. The perturbation quantities are expanded and we
consider a WKB solution for small values of ε. Recall that a =
ε−1 with a the wavenumber in the x̌-direction. The dominant
terms in the governing disturbance equations balance if we scale
T ∼ ε−4 and W/V ∼ O(ε−2), resulting in

ũ = E(u0(η)+ εu1(η)+ ε2u2(η)+ . . .),

ṽ = ε2E(v0(η)+ εv1(η)+ ε2v2(η)+ . . .),

w̃ = E(w0(η)+ εw1(η)+ ε2w2(η)+ . . .),

T = ε−4(λ0 +λ1ε+λ2ε2 + . . .),

where λ = λ0 +λ1ε+λ2ε2 + . . ., E = exp i
ε

∫
ϕ K(τ)dτ and ϕ =

sinψ

h̄1
η.

After substitution of these expansions into the governing equa-
tions and some simplification owing to the assumption of small
waveangle, we arrive at an eigenrelation at leading order which
can be solved to give the scaled leading-order eigenvalue esti-
mate. Following Hall’s method, we seek to analyze vortex ac-
tivity, which is found to be located at the wall near η = 0. We
consider a thin layer about this location, which is of thickness

ψ φ λ̄0 λ̄1
15◦ 0◦ 1.6236 2.0769
30◦ 1◦ 1.6477 1.8567

2◦ 1.6731 1.6389
2.7◦ 1.6915 1.4887
4◦ 1.7277 1.2162
5◦ 1.7572 1.0146
6◦ 1.7883 0.8221
8◦ 1.8556 0.4747

45◦ 8.5◦ 1.8735 0.3979
10◦ 1.9305 0.1991

Table 1. Leading- and first-order eigenvalue estimates of the
scaled Taylor number for orientation angles as observed by
Kobayashi & Izumi on cones with the stated half-angle.

O(ε
2
3 ), and expand the Taylor number to obtain a correspond-

ing eigenvalue relation at first order. The mathematics is very
involved and full details are given in [5]. In fact, we obtain an
infinite sequence of eigenvalues {λ1n}, corresponding to the ze-
ros of an Airy function on the negative real axis. Combining the
leading- and next-order solutions, the most dangerous instabil-
ity mode has a scaled Taylor-number expansion given by

T̄ = ε
−4

(
1

|Ṽ ′(0)|
+

2.34×3
1
3 ε

2
3

|Ṽ ′(0)|

[
Ṽ ′′(0)
Ṽ ′(0)

+Ṽ ′(0)cosφ

]2
+ . . .

)
.

(3)
Numerical estimates of the leading- and first-order eigenvalues
corresponding to the scaled Taylor number are shown in Table
1 for parameters in the experimental range observed by [8].

Numerical Analysis

While the numerical analysis reasonably consistent with the
asymptotics, we make further approximations and manipula-
tions to convert the disturbance equations into the governing
fourth-order Orr–Sommerfeld (OS) equation for stationary dis-
turbances within the system. We begin by neglecting terms aris-
ing from Coriolis and streamline-curvature effects and collate
the resulting equations in terms of the normal perturbation ve-
locity to form[

i
(

∂2

∂η2 − k2
)2

+Re
(
α1Ũ +β1Ṽ

)( ∂2

∂η2 − k2
)



ψ φ Rec α1,c
15◦ 0◦ 50 1.01
30◦ 2.7◦ 135 0.72
45◦ 8.5◦ 270 0.59

Table 2. Numerical calculations of the critical Reynolds num-
bers, Rec, and critical vortex wavenumbers, α1,c, in the effective
velocity direction for a range of small half-angle cones and cor-
responding vortex waveangles.

−Re
(

α1
∂2Ũ
∂η2 +β1

∂2Ṽ
∂η2

)]
w̃ = 0 (4)

where

α1 =
asinψ

Re
, β1 = bsinψ, k =

√
α2

1 +β2
1, (5)

and Re= xsinψ is the local Reynolds number, interpreted as the
local non-dimensional radius of the cone surface from the axis
of rotation. We relate this rotational Reynolds number, Re, to
the conventional Reynolds number, R, using equation (8) of [8]
to re-write the surface-curvature term, leading to

Re = R
1
2
√

1.616. (6)

We solve the governing fourth-order perturbation equation (4)
by employing an existing OS solver routine for the rotating
cone, which has been modified to allow existing solutions for
the OS neutral curve at specific values of ψ to be used in order
to enable fast convergence when searching for neutral curves
for the required values of ψ for slender cones. Numerical pre-
dictions of the critical Reynolds numbers and critical vortex
wavenumbers for ψ = 15◦,30◦ and 45◦ are shown in table 2.
The results illustrate a decrease in the half-angle leads to a re-
duction in the critical Reynolds number, implying slender rotat-
ing cones represent the most unstable flow cases and cones of
ψ ≤ 15◦ harbour the most dangerous modes. This is corrobo-
rated by the critical vortex wavenumbers in the effective veloc-
ity direction, which increase for smaller values of ψ. Further-
more, while the results recover the findings of [8], importantly,
at large Reynolds numbers and large vortex wavenumbers, we
observe qualitative agreement with our asymptotic results.

Comparisons

Numerical analysis of the OS equation yields qualitatively cor-
rect predictions of the neutral stability curves, which increase
in numerical accuracy as Re → ∞ (see, for example, [3] for
broad rotating cones). Hence, the OS results should recover the
large vortex wavenumber asymptotics at high Reynolds number.
Appropriate scalings are used, following [5] so that the Taylor
number defined in equation (2) is linearly related to the rota-
tional Reynolds number (see also [8]), leading to a relationship
of the form

Re = T̄
√

1.616 (7)

for larger Reynolds number, Re, and large Taylor number, T .
This such that increased T̄ corresponds to reduced half-angle
(for fixed φ). Comparisons with the Reynolds number Re
predicted by the OS analysis against vortex wavenumber are
shown in figures 2, 3 and 4 for ψ = 15◦,30◦ and 45◦, respec-
tively. In each figure, we have computed asymptotic curves for
φ = 0◦,2.7◦ and 8.5◦, respectively, in order to compare with
the most suitable basic flows from the OS analysis. These
correspond to the theoretical values of φ presented in [8] and
hence facilitate comparison with their results, as shown in [7]
for ψ = 15◦. We observe good qualitative agreement between
the OS neutral curves and the asymptotic branches of the scaled
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Figure 2. A comparison between the scaled effective asymp-
totic Taylor number T̄ (above) and the Reynolds number Re pre-
dicted by the OS analysis (below), against vortex wavenumbers
ε−1 and σ respectively, for ψ = 15◦,φ = 0◦.
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Figure 3. A comparison between the scaled effective asymp-
totic Taylor number T̄ (above) and the Reynolds number Re pre-
dicted by the OS analysis (below), against vortex wavenumbers
ε−1 and σ respectively, for ψ = 30◦,φ = 2.7◦.
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Figure 4. A comparison between the scaled effective asymp-
totic Taylor number T̄ (below) and the Reynolds number Re
predicted by the OS analysis (above), against vortex wavenum-
bers ε−1 and σ respectively, for ψ = 45◦,φ = 8.5◦.

effective Taylor number for ψ = 15◦,30◦ and 45◦. However,
in particular, we notice that as ψ increases, the agreement be-
tween the asymptotics and numerics becomes more favourable
for larger values of T̄ , further along the asymptotic branch,
which is seen moving from figures 2 to 4.

Conclusions

In this paper we have motivated the hypothesis of a centrifugal-
instability mode within the general class of rotating-cone
boundary-layer flows. An alternative formulation that focuses
on centrifugal effects has been developed and independent
asymptotic and numerical analyses conducted to verify the exis-
tence of such a mode. The asymptotic analysis was used to iden-
tify the centrifugal mode, yielding an indication of the range
of unstable wavenumbers against half-angle for large Reynolds
numbers and large vortex wavenumbers. Meanwhile, the OS
numerical analysis presented confirms existence of the centrifu-
gal mode and reveals a reduction in the critical Reynolds num-
ber as well as an increase in the amplification rate with reduced
half-angle, suggesting smaller values of ψ are destabilizing.
Hence, for flow over a spinning cone surface with a relatively
small half-angle, the centrifugal-instability mode may be inter-
preted physically as the most dangerous.

In conclusion, figure 5 shows a more complete view of the de-
pendence of the vortex waveangle on ψ. A major finding of both
the numerical and asymptotic studies in this parameter regime is
that the centrifugal modes compare well with the experiments of
[8], correcting the region where the crossflow instability theory
presented in [2] was insufficient. Finally, while both the current
study and [2] consider rotating cones in still fluid, the question
of how introducing external parameters, such as an enforced ax-
ial flow, affects the interplay between the dominant instability
modes remains. The crossflow instability for broader rotating
cones in axial flow has been considered and discussed in [3].
Meanwhile, an investigation into the centrifugal instability for
slender rotating cones within an imposed axial flow is ongoing
and we shall report on this in the near future.
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Figure 5. A comparison between experimental observations and
theoretical predictions of the vortex orientation angle at the on-
set of instability, updated from [2]. The diagram illustrates the
competing nature of the type I (crossflow) instability versus the
new (centrifugal) instability modes, which dominate for slender
half-angles and compare well with the experimental measure-
ments in this regime.
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[4] Hall, P., Taylor-Görtler vortices in fully developed or
boundary-layer flows: linear theory, J. Fluid Mech., 124,
1982, 475–94.

[5] Hussain, Z., Stability and transition of three-dimensional
rotating boundary layers, PhD thesis, University of Birm-
ingham, 2010.

[6] Hussain, Z., Garrett, S. J. and Stephen, S. O., The convec-
tive instability of the boundary layer on a rotating disk in
axial flow, Phys. Fluids, 23, 2011, 1141108.

[7] Hussain, Z., Stephen, S.O. and Garrett, S.J., The centrifu-
gal instability of a slender rotating cone, Journal of Algo-
rithms & Computational Technology, Vol. 6, No. 1, 2012.

[8] Kobayashi, R. and Izumi, H., Boundary-layer transition on
a rotating cone in still fluid. J. Fluid Mech. 127, 1983, 353–
64.

[9] Lingwood, R. J., Absolute instability of the boundary layer
on a rotating disk, J. Fluid Mech., 299, 1995, 17–33.

[10] Malik, M. R., The neutral curve for stationary distur-
bances in rotating-disk flow, J. Fluid Mech., 164, 1986,
275–87.


