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Abstract

The Oscillating Water Column (OWC), the first generation
Wave Energy Converter (WEC), is regarded as one of the most
effective technologies to extract ocean wave energy. Most
OWCs are designed to resonate at incoming wave frequencies,
so that efficiency of the device should be the maximum. How-
ever, the damping factors, which control the efficiency of the
OWCs, are not clearly identified. Therefore, an extensive study
of the internal fluid dynamics of an OWC is required to identify
those damping factors, and furthermore, to estimate the amount
of energy loss due to their presence in OWCs.

Dissipation in reciprocating motion, resulting from the viscous
and Reynolds stresses, is modelled both linearly and nonlin-
early. A comparison of linear and nonlinear dissipation with
Power Take-Off (PTO) damping is presented. The resulting
model permits the relative contributions of the internal viscous
and turbulent dissipation and the PTO damping to be assessed.

Introduction

A simple OWC device can be explained as a hollow cylinder
which is partially submerged in water, with a high-speed uni-
directional air tubine installed at the upper end. Waves in the
ocean cause the water column to oscillate inside the device, and
as a consiquence the trapped air above the internal free sur-
face is driven through the turbine. For a sufficiently narrow
device, the water column can be considered as a liquid pendu-
lum [9]. The natural frequency of such a liquid pendulum is√

g/L, where L is the length of OWC under water, and g is the
acceleration due to gravity. In reality, the water column in OWC
devices does not behave exactly like a rigid body [5]. However,
for the simplicity of performance evaluation, it is preferable to
make such assumption.

An OWC was first commercially built in Japan by Yoshio Ma-
suda, in 1965. In 1976, he built a much larger device, named
Kaimei, to investigate different features of OWCs and take this
technology in an advanced stage. However, the outcome of this
testing program was not satisfactory enough, and a lack of theo-
retical knowledge had been identified as one of the main reasons
for the device not being properly successful. The theoretical de-
velopment of OWCs was set off in the mid 1070s, based on the
knowledge from ship hydrodynamics. Remarkable works on
theoretical study are presented in Evans [3], Mei [12], etc.

The operating principle of general OWCs is identical to a forced
mass-spring-damping system, where the water column works as
a mass, and the body force of it (due to gravity) plays the role
of the spring restoring force. There are several damping factors
those control the power output of an OWC. The major part of
the damping comes from the PTO system, which is, in general,
the turbine-generator arrangement. Due to the pressure oscilla-
tion in the trapped air region, some energy radiates away from
the OWC, known as radiation damping. If the device aspect ra-
tio is high, sloshing at the air-water interface causes significant
damping. Energy dissipation due to the viscosity at the wall, the

presence of turbulence in the flow and the vortex formation at
the entrance are other important damping factors.

Generally, OWCs are designed to have a natural frequency that
coincides with the incoming wave frequency, so that the de-
vice resonates. At resonance, a device can extract enormous
amount of energy, unless the damping dominates. Estimating
the amount of energy loss due to different damping factors is
one of the most important prerequisites of constructing an ef-
ficient OWC. Numerous works have been done on estimating
PTO and radiation damping in OWCs, and solving the relevant
aspects of linear wave theory, such as [3, 4]. However, very
few studies are available in the literature that consider the en-
ergy loss due to viscosity and vortex formation and try to model
them as damping factors [2,11]. Dissipation due to the presence
of turbulence in the flow remains neglected.

In the present paper, a fluid-dynamical model of a simple OWC
is derived, including the PTO system. The PTO provides a
damping term, but that is desirable dissipation, since it rep-
resents useful power extracted from the system. The fluid-
dynamical dissipation, in contrast, is parasitic and undesirable.
All the assumptions needed to derive an ordinary differential
equation model of the internal fluid dynamics of an OWC from
the Navier-Stokes equations are identified. Prior to [9], lit-
erature on OWCs heuristically assumed an oscillator equation
modelled the system, without discussing the required assump-
tions.

The first-order flow created inside the OWC by ocean waves is
reciprocating. This means it is sinusoidal in time. Therefore
it periodically and completely reverses direction. It is never
steady or even quasi-steady. Only a few experimental, theo-
retical and numerical studies are available, compared with the
enormous body of work on steady flows.

Dissipation terms in the momentum conservation equation, for
the reciprocating flow system in an OWC, will be identified.
Out of all the dissipation factors, the viscous and Reynolds
shear stresses, and the PTO system are considered and mod-
elled; and the others are neglected for the time being. A linear
and a nonlinear damping model of the shear stresses are pre-
sented. The amount of energy loss from the both damping fac-
tors are estimated and compared with each other.

Formulation

The flow in an OWC is unsteady and reciprocating, i.e. periodic
with zero mean flow. Reciprocating flow has been studied for
past few decads to investigate the overall friction coefficients,
transition criterion of laminar to turbulent flow and the turbu-
lence structure [1, 7]. Friction coefficients from the literature
could be adapted to compute the damping due to viscosity in
an OWC. However, the evaluation of energy dissipation due to
the turbulence in reciprocating flow has remained untouched.
The velocity distribution in a reciprocating flow system shows
that, even for a low Reynolds number, the flow becomes ex-
tremely turbulent during the deceleration period [1]. Thus, for



a significantly high Reynolds number, turbulence would be a
major damping factor, and it requires careful attention to be
determined properly. In this work, the viscous stress and the
Reynolds stress are combined in one term, and then modelled
as a linear and nonlinear damping to fit into the governing ordi-
nary differential equation (ODE).

In the literature, the equation of motion for an OWC has been
presented as a simplified integral form of the momentum equa-
tion, which is basically a combination of a mass, spring, damp-
ing and external force terms. This attempt is to get to that simple
integral equation from the governing Navier-Stokes equations.
For the convenience, first the equations are nondimensionalized.
Assumptions required to simplify these complex equations are
highlighted.

The mass and momentum conservations in the OWC flow sys-
tem are respectively given by,
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where τ∗i j is the viscous stress tensor which can be represented
for an isotropic fluid as
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”*” represents dimensional quantities. ui
∗ is the velocity vector,

p∗ is the pressure, µ is the dynamic viscosity, assumed constant,
ρ∗ is the density and g is the acceleration due to gravity.

In a cylindrical co-ordinate system, xxx∗ = (x∗,r∗,φ), the length
scaling is

xxx∗ = Lxxx, (4)

where the length-scaling vector, L = (L,D,D), in which L and
D are respectively the length and diameter of the device. The
velocity, density and pressure are decomposed into a mean flow
or primary flow (presented with the bar), and a fluctuating com-
ponent (presented with the prime). These variables, along with
time (t∗) are scaled as,

t∗ = ω−1t, u∗ = ξ̂F ω
(
Ū+u′

)
,

ρ∗ = ρw ρ, p∗ =
ρwgLD

ξ̂F
(P̄+ p′),

(5)

where ω is the wave angular frequency, ξ̂F is the amplitude of
the water column oscillation, and ρw is the water density. If the
Volume of Fluid (VOF) model is used for tracking the air-water
interface in the OWC, then the non-dimensional density is given
as,

ρ =C+ρa(1−C), (6)

where C is the water volume fraction and ρa = ρ
∗
a/ρw, is the

non-dimensional density of the air. The density of the water,
ρw, is assumed constant, while the air density, ρa, varies with
time due to the compressibility. Owing to the turbulence in the
OWC flow system, there would be a fluctuation of the volume
fraction (C) at the interface location, as shown in [15]. Then the
C can also be decomposed as,

C = C̄+ c′.

This type of fluctuation can be studied properly, if the flow sys-
tem is solved numerically. However, the present paper is not
dealing with this type of precise calculation; rather highlighting

all the possible factors those are essential to capture the com-
plete picture of an OWC flow system.

After the scalings and ensemble averaging of equations (1)-(3),
the momentum conservation equation becomes,

∂

∂t

[
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where ρ̄ = C̄+ρa(1−C̄) and ∇∇∇ =
D
L

∂
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the non-dimensional momentum equation, the Froude number,
F̂r =

(
ω2 ξ̂2

F
)
/(gL) and the kinetic Reynolds number, Reω =(

ρwωD2)/(µ).
Momentum Equation for the Water and Air-Water Interface Zones

For sufficiently high aspect ratio (D/L), sloshing in the OWC
becomes a major damping factor, which can be investigated by
understanding the air-water interface dynamics. This requires
soluton of the equation (7) numerically, without any simplifica-
tion. However, the present paper assumes an interface of zero
thickness to avoid its complex dynamics.

Unlike the interface, it is possible to simplify the momentum
equation for the water zone. In the water region, C̄ = 1 and
c′ = 0. The x-component of the reduced version of equation (7)
is,
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∂Ū
∂r

+
W̄
r

∂Ū
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For the simplification, we neglect the flow developing regions
and assume a fully developed flow throughout the water zone.
This assumption is only valid if the ratio D/L is small enough,
which is also compatible with the assumption of zero interface
thickness. Additionally, a furthur assumption of axisymmetric
flow reduces the equation (8) to
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where the total shear stress (Reynolds stress and viscous stress)
is given by
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The cross-sectional area average of equation (9) is
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where Ūb is the mean bulk velocity and henceforth, it will
be expressed by ξ̇0 (time derivative of the displacement ξ0).
Integrating eqution (11) with respect to x from 0 to S0 (length
of the water column) gives,

ξ̈0 =−
1
F̂r

D
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(P̄a− P̄e)−4τt −
2gx

ω2S0
ξ0, (12)



Figure 1: Two different models of OWC device; (left) the most
general type OWC, and (right) a U-shaped OWC.

where P̄a is the pressure in the air chamber and P̄e is the pressure
at the OWC entrance. The pressure from a half sinusoid above
the sea level is

P̄∗w = ρwgHtc/2
√

2,

where Htc is the height from trough to crest, as explained in
[14]. Assuming that this is the pressure at the OWC entrance,
i.e, the change of pressure is constant between the sea level and
OWC entrance, gives

P̄e =
Htcξ̂F

2
√

2LD
.

Now, equation (12) can be rewritten as
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As mentioned earlier, reciprocating flow has been studied for
various purposes, however, the energy loss due to the shear
stress in such flow system is not yet clearly understood. Both
experimental and numerical work are required to understand the
role of the shear stress as damping. In this work, we tried to
gather the required information about the shear stress in recip-
rocating flow from the existing literature and replace it in the
above-mentioned equation by a damping term.

Non-Linear Damping Model for Total Shear Stress, τt

The experimental study by Hino [8] shows that, in reciprocat-
ing flow, the transition from laminar to turbulent flow occurs at
Reδ = Ūbδ/ν = 550, where δ =

√
2ν/ω. In a prototype OWC,

the approximate range of Reδ is 1000 to 2000, which is far
above that critical number. Another experiment on reciprocat-
ing flow by Jensen [10] shows that the flow becomes fully tur-
bulent at Re = ξ̂2

F/ων≈ 1×106. Generally, in an OWC, the Re
is above this limit and therefor, it is reasonable to presume that,
the flow in an OWC is fully turbulent.

Moreover, in [1], the phase variation of the total shear stress
(τt ), measured in a reciprocating flow, has been compared with
the theories developed for steady turbulent flow and the laminar
pulsatile flow. The experimental Reynolds number was within
the transition region. Thus, during the acceleration period, the
measured τt shows well agreement with the Uchida’s solution
for laminar ocsillatory flow. However, during the decelaration
period, when the flow behaved as fully turbulent, the experi-
mental result of τt agrees with the result from the Blasius cor-
relation,

τ∗t
ρw

= 0.03325 Ū∗2b

(
2ν

DŪ∗b

)−0.25
, (14)

which applies to steady turbulent flows in smooth pipes.

Since this correlation works fine at the turbulent flow regime
in reciprocating flow, and we are presuming turbulent flow
throughout the OWC, we can use this correlation to substitute τt
in equation (13). Now, after scaling, and introducing the kinetic
Reynolds number Reω to equation (14), we have,

τt = 0.0275 Ū2.25
b
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Substituting τt in equation (13) by (15) gives,
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Linear Damping Model for Total Shear Stress, τt

Modelling τt with a linear damping term in equation (13) is
complicated, since the flow in the OWC is turbulent. Here we
use the theory developed by Ogawa in [13], which studied the
reciprocating flow in a U-tube, both experimentally and theoret-
ically. A linear correlation between the velocity gradient in the
transverse direction, and the ratio of the velocity to radius has
been presented. The velocity distribution of the Bingham plas-
tic flow is assumed to establish this correlation. Interestingly,
the correlation works fine in both the laminar and turbulent flow
regime.

Now, the total shear stress according to Ogawa’s theory is
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where the velocity factor,
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After scalling equation (17), and then replacing the τt in equa-
tion (13) by it, gives
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Dissipation Due to the Power-Take-Off (PTO) System

Air in the air chamber gets compressed when the water column
moves upward, and it expands when the water column moves
downward. This tells us along with the equation (13) that, the
air chamber pressure, P̄a works as a negative force or damping
in the equation of motion. This air pressure is highly dependent
on the turbine geometry.

In this paper we assume that, there is no phase difference be-
tween the water column oscillation and the air flow through the
turbine, which gives the mass flow rate as

ṁ∗ =−d(ρ∗aV ∗)
dt∗

, (19)

where the volume of air in the air chamber, V ∗(t) = V ∗0 −
Aaξ0(t); V0 is the volume of the air chamber when there is



no oscillation, and the cross-sectional area of the air chamber,
Aa = πD2/4. We also assume that the turbine maintain a linear
relationship between the mass flow rate and the air pressure,

ṁ∗ =
Kd∗0
N∗

P̄∗a , (20)

where K is the turbine coefficient which is fixed for a given
turbine geometry, d∗0 is the diameter of the turbine rotor, and N∗

is the rotational speed of the turbine. Assuming air as an ideal
gas, and considering isentropic compression and expansion in
the air chamber, from equation (19) and (20) after linearization
we get,

V ∗0
ρ∗ac∗2

dP̄∗a
dt∗

+
Kd∗0
ρ∗aN∗

P̄∗a = q∗, (21)

where the volume flow rate, q∗ = Aaξ̇0, and c∗ is the speed of
the sound in air. After scalling, equation (21) becomes as
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Results

The average power generated by an OWC is calculated using
the linear and nonlinear damping models, as shown in Figure
(2). Power calculated from the nondimensional ODEs are trans-
lated to dimensional units by multiplying it with ρgLωD3. First,
equation (13) and (22) are solved by neglecting the damping due
to the shear stress for a device of 70 m long and 5 m dia. Al-
though, such a long and norrow OWC has not yet reached pro-
totype level, the next generation deep water devices may have
such dimensions, as proposed in [6].

Figure (2) shows this OWC generates more than 500 KW power
when it resonates. The inclusion of linear damping terms into
the governing ODE reduces the power output, but not much.
Whereas, the power output drops very significantly (to 2100 W),
if the nonlinear damping model is used.
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Figure 2: Average power (Pavg) generated by the OWC at dif-
ferent wave frequency (ω).

Conclusion

Understanding the different damping factors and estimating
their contribution to the energy loss in an OWC is one of the
most important design prerequisites. So far, damping due to
internal turbulent shear stress has not received much attention
in the design of OWCs. The present results show that internal

turbulent damping may play an important role when the device
is long. The shear stress in this case causes very significant
damping of the overall OWC power extraction. In addition, the
energy losses due to the vortex generation at the entrance and
the sloshing inside the OWC remain unevaluated.
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