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Abstract

Approximately ten per cent of the ocean surface is frozen into
a layer of sea ice. Ocean surface waves penetrate deep into the
ice-covered ocean. Waves breakup the ice, cause ice floes to
raft and contribute to formation of new ice. They hence play a
key role in extent and strength of the ice cover. An experimen-
tal model of wave-ice interactions was implemented using the
wave basin facility at Plymouth University. A single floe was
subjected to monochromatic waves, using different amplitudes
and frequencies. Two different synthetic materials were used to
model the ice. Only a loose mooring restricted the floe. The
elastic plate motion was measured using a non-intrusive motion
tracking system and the depth of fluid on the plate surface was
measured simultaneously. Preliminary results in which the ex-
perimental measurements are compared to a two dimensional
thin elastic plate model are presented.

Introduction

The Marginal Ice Zone is a region of broken ice which forms at
the boundary of the open and frozen ocean. It is often subject
to intense wave activity and waves are believed to play a critical
role in determining its extent and morphology. Understanding
the complex interaction between waves and ice requires com-
prehending a number of important processes, including both
floe breaking and wave attenuation. However, the most critical
to determine is the attenuation of waves, because it is impossi-
ble to estimate wave induced floe breaking without knowing the
wave intensity. The successful modeling of wave propagation
in the MIZ has applications to wave forecasting [2], offshore
engineering, and climate modeling.

Recently, an experimental measurement using disposable wave
sensors was conducted in the Antarctic and comparison was
made with the observed trends in sea ice extent [3]. This study
showed that ocean was play a much greater role in controlling
ice extent than was previously thought. Further analysis of this
data appeared in [6] which showed that the attenuation varies
with inverse square of wave period. At present, no theory exists
which explains this dependence.

The experimental study of elastic bodies in a wave flume began
with researchers trying to understand the motion of very large
floating structures, motivated by proposals to build floating air-
ports [12]. In the context of wave-ice interactions a series of
experiments were performed on circular floating elastic plates
by [9, 8]. The present work can be thought of as an extension of
this study. In the work of [9, 8], two key unphysical constraints
were applied to the floating plate. The plate was moored so that
all surge motion was restricted to zero and a barrier was built
around the elastic plate to insure no fluid could entered onto
the the plate surface (i.e. that the overwash was zero). In our
present study, the plate is only loosely moored and no barrier is

placed around the plate. Furthermore, we consider here rectan-
gular plates, which allow comparison between the two and three
dimensional hydroelastic theories.

The standard model for ice floes is to assume they can be mod-
elled as a floating thin elastic plate of negligible draft [11]. The
experiments of [9, 8] showed that this model performed well
(with their inclusion of a barrier and surge restricting mooring).
The elastic plate model is an extension of the standard linear
potential flow model for rigid bodies to include elastic modes
[1].

Experimental Setup

The laboratory facility consists of a directional wave basin of
width of 10 m, length 15.5 m and water depth 0.5 m (see Fig. 1).
The tank is equipped with twenty individually controlled active-
piston wave makers, which are capable of absorbing incoming
waves by measuring the force on the front of the paddle and
controlling the velocity. At the opposite end, wave energy is
dissipated by a beach of slope 1:10. A reflection analysis in
the centre of the basin shows that the combined effect of the
active pistons and the beach ensure an overall level of reflection
lower than 1% of the incoming energy. Remaining reflected
energy (normally confined within low frequency components)
is removed.

At a distance of 2 m from the wave maker, a plastic sheet
was deployed to simulate an ice floe. Two different types
of plastic were tested: a polypropylene plastic with density
of 0.905 g cm−3 and Young’s modulus 1600 MPa; and PVC
(FOREX R©) plastic with density 0.500 g cm−3 and Young’s
modulus 500 MPa. Note that polypropylene has density sim-
ilar to sea ice but has different rigidity. PVC has a rigidity
comparable to sea ice but substantially lower density, which
results in a larger freeboard. Polypropylene sheets were pro-
vided with thicknesses 5 mm, 10 mm, 20 mm and 40 mm; PVC
was provided with thicknesses 5 mm, 10 mm and 19 mm. The
sheets were cut into square floes with side lengths Lplate = 1 m.
The experimental set-up was designed to represent the full scale
wave-ice interactions in scale 1:100.

At the wave maker, waves were generated by imposing three
different wave periods, namely T = 0.6 s, 0.8 s, and 1 s, with
corresponding wavelengths Lwave =0.56 m, 1 m and 1.56 m, re-
spectively. The wave fields therefore tested conditions in which
the waves were shorter than, equal to and longer than the floe.
The wave amplitude, a, was selected so that the wave steep-
ness ka, where k is the wavenumber, matched the following
values: 0.04, 0.08, 0.1 and 0.15. This range includes gently
sloping waves (ka = 0.04 and 0.08) as well as storm-like waves
(ka = 0.1 and 0.15), without reaching the breaking limit.

A series of experiments were conducted in which spherical
polystyrene markers we placed on the surface of the elastic



Figure 1. Directional wave basin and experimental set-up.

Figure 2. Overwash of a polypropylene floe (right panels) and PVC floe
(left panels) for a wave field with wavelength equal to the plate length
and plate thickness of 10 mm.
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Figure 3. Example of water surface elevation over a polypropylene plas-
tic sheet of thickness 10mm in a wave field of wavelength 1m and steep-
ness ka = 0.15.

plate. The location of the markers was measured stereoscop-
ically by the Qualysis R© motion tracking system, via a set of
infrared cameras. The Qualysis system provides time series of
the motion of the markers with respect to a Cartesian coordinate
system (x,y,z). Simultaneously a wave probe was placed on the
centre of the elastic plate and the overwash was measured on
the plate surface.

Figure 2 shows example plate motions. It is apparent from
these photographs that the plate is moving elastically and that
for steep waves there is significant overwash (fluid on the plate
surface). Figure 3 shows an example of the measured water
depth on the plate at the centre of the plate. The arrival of the
incident monochromatic wave can be seen in this figure. Af-
ter it has arrived a highly nonlinear wave can be seen to flow
across the surface of the plate. We are interested in understand-
ing the effect of this overwash on the plate motion and whether
the standard thin elastic plate theory can still be applied under
these conditions.

Floating Elastic Plate in Two Dimensions

We present here a simplified model for a floating elastic plate
which assumes that the plate can be modelled using thin plate
theory and that the draft is negligible. Such a model has become
standard as a model for ice floes and a detailed description of
applications and theeory can be found in [11]. Such a model
was the basis of the work of [9, 8] A key part of the present
experimental study is validate this model and to establish its
range of applicability. The problem of a two-dimensional float-
ing elastic plate of finite length and zero draft is the simplest
and best-studied problem in hydroelasticity, and as such it is the
ideal starting point to compare with experiments. Solutions in
the frequency domain were first presented by [7, 10]. It is as-
sumed that the plate occupies the region (−L,L) and that the
water is of constant depth h. The fluid velocity potential is de-
noted by φ. The problem is to determine the unknown coef-



ficients in the expansion of the plate motion given by ξn. The
non-dimensional velocity potential (where length is scaled by a
length parameter l which we leave arbitrary and time is scaled
by
√

l/g) satisfies

∆φ = 0, −h < z < 0, (1a)
∂zφ = 0, z =−h, (1b)
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2
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where wν are the modes of vibration of an elastic plate which
satisfy
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and are normalized so that∫ L

−L
wνwµ dx = δνµ, (2d)

where δνµ is the Kronecker delta. Note that the appropriate
Sommerfeld radiation condition is imposed at infinity. The non-
dimensional stiffness is given by β = D/ρgl4 where D is the
bending stiffness, ρ is the fluid density, and g is the gravitational
acceleration. The non-dimensional mass is given by γ = mH/ρl
where m is the mass density of the plate and H is the plate thick-
ness.

The velocity potential is expanded as

φ = φ
I +φ

D− iω
∞

∑
ν=0

ξνφ
R
ν , (3)

where
φ

I = eikx, (4)

is the incident wave of unit amplitude and k is the wave number
(which is the real positive solution of the dispersion equation
k tanh(kh) = ω2). The diffraction potential φD is found by solv-
ing equation (1) and

−∂zφ
I = ∂zφ

D, x ∈ (−L,L), z = 0, (5)

The radiation potentials φR
ν are found by solving equation (1)

and
wν = ∂zφ

R
ν , x ∈ (−L,L), z = 0. (6)

We define the stiffness matrix by

K = dβλ
4
νc, (7)

where d. . .c denotes a diagonal matrix and the mass matrix by

M = γI, (8)

where I is the identity matrix. The hydrostatic restoring matrix
is defined by

C = I. (9)

The equation for the diffraction and radiation potentials is
solved using the two-dimensional Green function. The equa-
tions for the diffraction and radiation potentials are as follows,

φ
D(x) = φ

I(x)+
∫ L

−L
G(x,x′)αφ

D(x′)dx′, (10)

φ
R
ν (x) =
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R
ν (x
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)
dx′. (11)

The Green function satisfies

∆G(x,z,x′) = 0,−h < z < 0, (12a)

∂zG = 0, z =−h, (12b)

∂zG−αG = δ(x− x′), z = 0, (12c)

and the Sommerfeld radiation condition that the waves are out-
going at infinity. The Green function for z = 0 is given by

G(x,x′) =
∞

∑
p=0

e−|x−x′|kp

tan(kph)+ kphsec(kph)
, (13)

where kp are the roots of the dispersion equation

α+ kp tan(kph) = 0, (14)

with k0 being purely imaginary with negative imaginary part
and kp for p≥ 1 being purely real with positive real part ordered
with increasing size [4]. It is noted that, since the problem is two
dimensional, the transmission coefficient T can be defined as

T = lim
x→∞

φ(x,0)
eikx . (15)

The elements of the real added mass and real damping matrices
A and B are defined as

ω
2Aµν + iωBµν = ω

2
ρ

∫∫
∂ΩB

φ
R
ν nµ dS, (16)

and the elements of the force vector f are defined as

fµ = iωρ

∫∫
∂ΩB

(
φ

I +φ
D
)

nµ dS. (17)

The solution to equations (1) can be written in matrix form as(
K+C−ω

2M−ω
2A(ω)− iωB(ω)

)
ξ = f(ω), (18)

where the elements of the matrices are given above.

Results

We present here preliminary results looking at the comparison
of the simple two-dimensional linear model based on potential
flow theory and the measured plate motions. The motion was
measured on a four by four grid of points. The plastic sheets
were placed perpendicular to the incident wave direction. We
compare the measured data with our simplified two dimensional
model along four lines on the plate. Figure 4 shows the com-
parison for the 10mm PVC sheet for a period of 0.6s. This test
configuration has been chosen because it is one of the test which
exhibited the greatest overwash. The steepness was 0.04. The
solid line is the two-dimensional model prediction and the thin
lines represent four lines along the plate. Figures 5 and 6 are
the equivalent plots except the wave steepness is increased to
0.1 and 0.15 respectively. These figures show that the simpli-
fied model gives reasonable prediction even when the steepness
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Figure 4. Motion of the plate (thin lines) for a 10mm PVC sheet for
a period of 0.6s. The steepness was 0.04. The thicker line is the two-
dimensional model prediction.
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Figure 5. As in Figure 4 except the steepness was 0.1.
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Figure 6. As in Figure 4 except the steepness was 0.15.

is increased and there is significant overwash. The phase of the
wave is given by θ and η is the displacement of the plate.

Conclusions

We have presented preliminary results from an experiment con-
ducted to investigate the validity of the elastic plate model for
ice floes in the case of wave heights significant enough to cause
overwash. We have show that a simplified two-dimensional lin-
ear models gives reasonable agreement with measured results.
The next stage in this project is to compare with the three-
dimensional theory developed in [5].
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