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Abstract 

A new model equation describing weakly nonlinear long internal 

waves at the interface between two thin layers of different 

density is derived for the specific relationships between the 

densities, layer thicknesses and surface tension between the 

layers. The equation derived and dubbed here the Gardner–

Kawahara equation represents a natural generalisation of the 

well-known Korteweg–de Vries (KdV) equation containing the 

cubic nonlinear term as well as fifth-order dispersion term. 

Solitary wave solutions are investigated numerically and 

categorised in terms of two dimensionless parameters, the wave 

speed and fifth-order dispersion. The equation derived may be 

applicable to wave description in other media. 

Introduction  

The governing equation describing long internal waves of small 

amplitude at the interface in a two-layer fluid is, in general, the 

well-known KdV equation [1, 3]:  
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Here the coefficients are:  
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where index 1 pertains to the upper layer, index 2 – to the lower 

layer (see figure 1), 1,2 are densities of the layers, h1,2 are 

thicknesses of the layers, and  is the surface tension between 

the layers. For the sake of simplicity we assume here that the 

‘rigid lid’ approximation is used to filter the surface mode [4]. 

However, at certain conditions equation (1) degenerates because 

some of its coefficients vanish. In particular, the generalisation is 

required when the density interface is located near the half-depth 

of the fluid. In this case the coefficient of quadratic nonlinearity 

 becomes anomalously small, and one should take into 

consideration the next order nonlinear term, the cubic term, to 

balance the dispersion effect [3]. The corresponding equation is 

known as the Gardner equation:  
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where the cubic nonlinear coefficient is: 
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Figure 1. Sketch of internal waves at the interface between two fluid 

layers. 

The KdV and Gardner equations are completely integrable [1]; 

they possess soliton solutions which attract a special interest due 

to their specific particle-like properties. In a two layer fluid the 

structure of Gardner solitons is very well studied. 

There are also situations when the dispersion coefficient  

vanishes. Such cases are known, for example for gravity-

capillary waves with strong surface tension and magnetosonic 

waves in plasma [11]. In the near critical situation when the 

dispersive coefficient  becomes anomalously small, the next-

order dispersion should be taken into consideration. This leads to 

the fifth-order KdV equation currently known as the Kawahara 

equation with the quadratic nonlinearity [12, 8, 7]:  
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Recently the similar equation was derived for internal waves for 

two-layer fluid [5] and it was obtained the expression for the 

coefficient  1:  
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where a =  1/ 2,   b = h 1/h 2,   H = h 1 + h 2, and   

s = 2 /[( 1 +  2)Hc2].  

It has been shown in [5] that in the case of internal waves in two-

layer fluid with strong surface tension at the interface the double-

critical situation is also possible when both the coefficients  and 

 become so small that the next order corrections with the 

coefficients 1 and 1 should be taken into consideration. As one 

can see from equation (2), both the coefficients  and  vanish 

simultaneously when  1 =  2b
2 and  = c2 2h2(1 + b3)/3. In this 

case the coefficients 1 and 1 take simple forms:  
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The coefficient  1 is always positive and has the minimum value 

at b = 1; its plot is shown in figure 2. 

 
Figure 2. The dependence of the normalised dispersion coefficient 

1/(cH 4) on the ratio of layer thicknesses b = h1/h2 at the double critical 

situation. 

In the vicinity of the double critical situation the governing 

equation reads:  
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We will call this equation the Gardner–Kawahara equation. In 

this paper we consider stationary solutions of equation (8) in the 

form of solitary waves (solitons). A family of such solutions are 

constructed numerically by means of the Petviashvili method [15, 

14] and Yang–Lakoba method [16]. 

Dispersion relation and stationary solutions 

Let us present equation (8) in the dimensionless form using 

change of variables:  
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After that the main equation reads:  
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where B = (1/1)(
  /)2. For waves of infinitesimal amplitude 

we obtain from equation (10) the following dispersion relation 
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The phase speed Vph() is shown in figure 3. 

In the case B  0 the phase speed is a monotonic function of , 

whereas at B > 0 it has a minimum, Vmin = –1/(4B) at the point c 

= (2B)–1/2. The concept of phase speed is very important in 

understanding the process of interaction of a moving source with 

waves. In particular, if the speed of a source is such that there is 

no resonance with any wave, i.e. there is no intersection of the 

dashed line in figure 3 with the dispersion curve (e.g., with lines 

1 or 3), then the source does not loose energy for wave 

excitation. Otherwise, in the case of the resonance (see the 

intersection of dashed line with line 2), the source experiences 

energy losses for wave generation and, as a result, it experiences 

wave resistance. Without external compensation of energy losses 

such source cannot move stationary. 
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Figure 3. Phase speed for B = 0 (line 1), B = 1 (line 2), and B = –

1 (line 3). 

Consider now stationary solitary solutions to equation (10) 

depending on one variable  =  – V. Then, integrating equation 

(10) once we obtain:  
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As follows from this equation the shape of a solitary wave is 

determined by two parameters, B and V. Considering asymptotic 

solution when   0 at   , we can linearise this equation 

and seek for its solution in the form  ~ e 
. Then we obtain for  
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The roots to this bi-quadratic equation are: 
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Assume first that B is negative, then for V < 0 we have 1 4BV  

> 1; therefore the roots 1,2 are purely imaginary, and the roots 

3,4 are real. Solutions corresponding to purely imaginary roots 

are not decaying and can’t represent solitary waves with the zero 

asymptotics. If V = 0, then 1,2 = 0 and again we have a solution 

with non-decaying asymptotics. If 0 < V < –1/(4B), then we have 

1 4BV  > 0, and all four roots  are real. In this case the soliton 

solutions are possible with the exponential asymptotics at the 

infinity,  ~ exp(–|1|). And at last, if V >  –1/(4B), then 

1 4BV  is complex; all roots are complex-conjugate in pairs 

1,2 = (p1  iq1), 3,4 = (p2  iq2). Due to the presence of the 

real parts of the roots p1,2, the soliton solutions are also possible 

with the oscillatory asymptotics. The decay rate of a solitary 

wave in the far filed is determined by the root with the smallest 

value of |p1,2|. 

Assume now that B is positive, then it follows from the similar 

analysis as above that solitary waves with the oscillatory 
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asymptotics are possible only when V < Vmin  –1/(4B). In the 

particular case of B = 0, equation (13) has two real roots  1,2 = 

V corresponding to soliton solutions, provided that V > 0.  

These findings can be summarised with the help of a schematic 

diagram shown in figure 4. It should be noticed that the analysis 

of roots only predicts possible asymptotics of solitons provided 

that they exist, but it does not guarantee their existence. In 

particular, if B = 0, then soliton solutions with monotonically 

decaying exponential asymptotics could exist for any V > 0 (see 

case b) in the diagram), but in fact they exist only for 0  V  1/6 

(see the exact solution (15) of the Gardner equation below). 

 
Figure 4. Schematic structure of solitary wave asymptotics for equation 

(12) with different signs of B (frame a). If B = 0 only the solitons with 
monotonic exponential tails are possible as shown in frame b) – see exact 

solution equation (15) below. 

Soliton solutions to the Gardner–Kawahara equation 

Consider first the limiting case of B = 0 when equation (12) 

reduces to the completely integrable Gardner equation. It has a 

family of soliton solutions which is determined by only one 

parameter V varying in the interval 0  V  1/6 (a soliton solution 

does not exist beyond this interval):  
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where X =  V/2,  (V) = (1/4) ln{[1 + (6V)1/2]/[1 + (6V)1/2]}, and 

soliton amplitude A = 1 – (1 – 6V)1/2. The family of solitons 

varies from KdV-type bell-shaped solitons, when V  0, to table-

top solitons, when V  1/6 [3]; the typical solitons are shown in 

figure 5 for three values of V. 

 
Figure 5. Solitary wave shapes as per equation (15) for three values of V. 

Line 1 pertains to V = 0.1 (quasi-KdV case), line 2 pertains to V = 0.1663 

(‘fat soliton’), and line 3 pertains to V = 0.166666 (table-top soliton). 

If B ≠ 0, then exact analytical solutions of equation (12) are not 

known. However they can be constructed numerically using, for 

example, a modified Petviashvili method [15, 14] or even more 

effective Yang–Lakoba method [16].  

As the test case we have considered the Gardner equation (12) 

with B = 0. For relatively small V  0.1663 we obtained 

numerical solutions in a complete agreement with the analytical 

solution (15). But for larger values of V we failed to obtain any 

solution by means of the modified Petviashvili method as the 

iteration procedure did not converge to something. In the 

meantime, the application of the Yang–Lakoba method [16] 

enabled us to construct soliton solutions in the complete 

agreement with the analytical solution (15) for any positive value 

of V < 1/6. Thus, we have confirmed that the Yang–Lakoba 

method is even more efficient and converges faster than the 

Petviashvili method. 

In the case of B > 0 we obtained various shapes of solitary waves 

by the Petviashvili method for different values of V; they are 

illustrated by figure 6 for B = 1. For other positive values of B the 

soliton structures are qualitatively the same as shown in this 

figure, but solitons become narrower when B  0 and wider 

when B  . Their asymptotic behaviour is in agreement with 

the prediction shown in figure 4 for B > 0; the oscillatory tails of 

solitons are clearly seen in this figure. 
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Figure 6. Solitary wave shapes numerically obtained for B = 1 and three 

values of V. (Case a)  V = –0.3, (case b)  V = –0.5, (case c)  V = –1.0. 

It is worth noting two features of these solitons. Firstly, at small 

amplitudes, when V  (Vmin)-, solitons reduce to stationary 

moving wavetrains. Such wavetrains can be described by the 

higher-order non-linear Schrödinger equation; similar solutions 

in the form of envelope solitons have been earlier obtained for 

the Ostrovsky equation [13, 9]. 

Secondly, due to oscillatory character of soliton tails, solitons can 

form the bound states – stationary propagating bi-solitons and 

even more complicated multi-solitons [6, 7, 13]. We do not 

consider such structures in details here, but present only one 

example in figure 7. In frame a) one can see a single soliton with 

oscillating tails, whereas in frame b) the bi-soliton is depicted for 

the same parameters B = 1 and V = –0.5. 
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Figure 7. Examples of single soliton and bi-soliton representing a family 

of stationary multi-soliton solutions of the GK equation (12). 

For the sake of completeness, we have investigated a structure of 

soliton solutions for the negative parameter B too, although in the 



context of interfacial waves in two-layer fluid this parameter is 

always positive. With the help of Petviashvili and Yang–Lakoba 

numerical methods we have obtained a family of soliton solutions 

only in the finite range of the parameter V: 0 < V  Vcr, where Vcr 

depends on B, but only slightly differs from 1/6. We did not 

investigate in details the dependence of soliton speed on its 

amplitude for different values of B, this can be a matter of a 

separate study. In figure 8 we present several soliton solutions 

constructed numerically for the fixed amplitude A = 0.998 and 

different B. 
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Figure 8. Solitary wave shapes numerically obtained for the fixed soliton 
amplitude A = 0.998 and four values of B: (line 1)  B = 0, (line 2) B = –

10, (line 3)  B = –100, (line 4)  B = –1000. 

As one can see from this figure, the greater the B, the wider the 

soliton. Again, in accordance with the prediction, soliton 

asymptotics changes from the exponential aperiodic, when V < –

1/(4B), to oscillatory decaying, when V > –1/(4B) (see figure 4). 

However, the oscillations are so small and they decay so fast that 

are hardly visible in soliton profile. In the insertion one can see 

the magnified portion of corresponding soliton tails.  

Due to oscillatory character of soliton tails the bounded bi-soliton 

and multi-soliton solutions may exist in this case too. Moreover, 

even more complicated infinite chains of bounded solitons are 

possible. Such chains may be both regular and irregular 

representing quasi-random sequences of bounded solitons [7]. 

Conclusion 

Thus, in this paper we have shown that in the study of interfacial 

waves between two immiscible fluids there are such situations, 

when the double critical conditions can occur, i.e. when both the 

coefficients of quadratic nonlinearity and third-order dispersion 

vanish simultaneously. In the near-critical situation the basic 

governing equation is the Gardner–Kawahara equation (8). Let us 

make an estimate of physical applicability of the Gardner–

Kawahara equation to the real case of two-layer system 

consisting of kerosene in the upper layer and water in the lower 

layer. Take the following parameters for the kerosene and water 

at 20C: the density of kerosene is  1 = 0.82 g/cm3, the density of 

water is  2 = 0.998 g/cm3, and the surface tension at the interface 

between them is  = 48 dyn/cm. Then the double critical 

condition occurs, if the layer thicknesses are h1 = 0.82 cm and h2 

= 0.9 cm with the total fluid depth H = h1 + h2 = 1.72 cm. If we 

choose h1 = 0.62 cm and h2 = 1.1 cm with the same total depth, 

we will have a near critical condition with h1/h2  0.56. In this 

case the coefficient  1 is positive and close to its minimum value 

(see figure 2); the dimensionless coefficient B in equations (10), 

(12) is also positive, and equation (12) possesses soliton solutions 

of negative polarity with the oscillatory tails as shown in figure 6. 

The shapes of such solitons may vary from quasi-sinusoidal 

wavetrains, when the amplitude goes to zero, up to narrow 

pulses, when the amplitude increases. The negative speeds of 

these solitons (see the diagram in figure 4) imply that they travel 

with the speeds less than the speed of long linear waves c in the 

immovable coordinate frame [see equations (1) and (2)]. 

Apparently, the similar Gardner–Kawahara equation can be 

applicable for the description of other types of waves in 

continuous media, for example, in plasma physics. The equation 

can be further generalised to take into account weak medium 

rotation in the spirit of the Ostrovsky equation [3, 10] and weak 

wave diffraction in the spirit of the Kadomtsev–Petviashvili 

equation [15]. In the latter case two-dimensional lump solitons 

with oscillatory tails can be possible. Such solutions were 

constructed numerically for the two-dimensional version of the 

Kawahara equation (3) in [2]. 
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