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Abstract

A hybrid of computational and theoretical approaches is devel-
oped to model the interaction of a Blasius boundary-layer flow
interacting with a compliant panel that is embedded in an other-
wise rigid flat plate. The study is motivated by the potential
of compliant panels to reduce the amplification of Tollmien-
Schlichting waves (TSWs) as a means to control boundary-
layer transition. Using a classical decomposition into mean
and perturbation quantities of the system variables, the velocity-
vorticity forms of the three-dimensional Navier-Stokes equa-
tions are solved after linearisation. The compliant panel is mod-
elled using classical thin-plate theory added to which is a spring
foundation. Flow and wall mechanics are then fully coupled and
a fluid-structure interaction (FSI) system eigen-problem is as-
sembled. Results show that global instabilities may occur when
either of a TSW or a wall-based instability called travelling-
wave flutter (TWF) couples with a structural mode. The compli-
ant panel reduces the spatial amplification of convectively un-
stable TSWs although the finite width of the panel, as modelled
by spanwise variation of the mode, decreases this beneficial ef-
fect. However, the effect of the panel width on the globally
unstable TWF-type mode is strongly stabilising. Overall the
results indicate that panel aspect ratio in the three-dimensional
FSI system will be an important parameter in the design of prac-
ticable compliant panels for drag reduction.

Introduction

It is well known that compliant walls are able to reduce the
growth rates of Tollmien-Schlichting waves (TSWs) in marine
applications. This has, for example, been demonstrated the-
oretically in [1] and confirmed experimentally in [6]. Con-
ventional transition via the amplification of TSWs can there-
fore be postponed through the use of compliant coatings ad-
hered to an otherwise rigid surface. The extension of the lam-
inar boundary-layer region can then yield a reduction to skin-
friction drag. However, compliant walls have also been shown
to support hydro-elastic instabilities such as divergence and
travelling-wave flutter (TWF) [9, 11] that can trigger premature
transition and thus for a practicable technology these must be
accounted for the choice of the compliant coating. To date, opti-
misations of compliant-wall performance have been based upon
two-dimensional (2D) local analyses; for example see [2, 4].

Local spatial stability studies of three-dimensional (3D) dis-
turbances [16, 7] and DNS [14] have shown that 3D TSW
modes over compliant coatings may be more dominant than
their 2D counterparts because there is an apparent increase
in panel stiffness (relative to the free-stream dynamic pres-
sure) in their direction of propagation. However, this effect
is beneficial with respect to the hydro-elastic instabilities as is
the side-edge restraint as shown, for example, in [10]. A re-
cent global stability analysis of 2D disturbances [13] takes into
account compliant-wall boundary conditions and predicts that
interaction-resonance between the panel and the TWF or TSW

modes can take place rendering the system globally unstable
with temporal growth.

In this paper we develop solutions to the linearised three-
dimensional velocity-vorticity formulation of [3] using a
boundary-integral method based on the generalized Helmholtz
decomposition of the flow field [8, 15]. These are fully cou-
pled to the linear dynamics of a 2D orthotropic Kirchhoff plate.
Herein we use the model to determine time-asymptotic global
stability of the FSI system through the extraction of a significant
part of the eigen-spectrum. However, the model could equally
be used to undertake the transient analysis through integration
in time of the system model.

Theoretical and Computational Modelling

Mean Flow Field

The mean flow of interest is the zero-pressure-gradient flat-plate
boundary layer; see figure 1. The displacement thickness δ′s at

Figure 1: Schematic of the system studied with nomenclature

the entrance x′s of the flow field is assigned as the characteris-
tic length scale, while the free-stream flow speed wholly in the
x-direction is U ′∞ is used as the characteristic velocity, where
primes denote dimensional quantities. The local Reynolds num-
ber, Re, at position x of the flow field is related to the Res at the
entrance of the domain through, Rex = γ(xRes)

1/2, where Res =

ρ′lU
′
∞δ′s/µ′l = γ(ρ′lU

′
∞x′s/µ′l)

1/2 and γ = 1.7208 for the Blasius
profile. The undisturbed streamwise and vertical velocity com-
ponents in the growing boundary layer are respectively defined
by, Ux = d f/dH and Uz = (γ/2)(xRes(H(d f/dH)− f ))1/2,
where f (H) satisfies the Blasius equation,

2 d3 f
dH3 + γ

2 f d2 f
dH2 = 0, (1)

in which with H = z/(γ
√

x/Res) subject to the boundary con-
ditions f (0) = [d f/dH](0) = 0 and d f/dH→ 0 as H→ ∞.



Disturbance Field

Starting from the general velocity-vorticity disturbance formu-
lation found in [3], allowing 3D disturbances and retaining only
the linear velocity and vorticity terms, we obtain the following
equations for the disturbances:

∂ωx
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∂ux
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(3)

with variables of the mean Blasius flow assigned capital letters
and those of the disturbances are in lowercase and noting x, y
and z are respectively, the streamwise, spanwise and vertical
coordinates. Following [3], we solve equations (2) and (3) to-
gether with the integral representation in the vertical direction
of the definition of spanwise and the streamwise vorticity re-
spectively, and the vorticity continuity written as follows:

ux =−
∫

∞

z

(
ωy +

∂uz
∂x

)
dz, (4)

uy =
∫

∞

z

(
ωx− ∂uz

∂y

)
dz, (5)

ωz =
∫

∞

z

(
∂ωx
∂x +

∂ωy
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dz. (6)

Instead of solving the normal (to the flow) component of the
vector Poisson equation, we employ a Helmholtz decomposi-
tion, [15, 8], and couch the disturbance flow field as the sum
of its rotational and an irrotational velocity fields. Then, the
normal component of the velocity field can be expressed as an
integral representation of the streamwise and spanwise vortic-
ity in the domain and of a prescribed normal velocity on the
boundary, ûzB ; thus

ûz(x′′,z′′) = −
∫
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0
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where G = (1/(2π))K0(b
√
(x′′− x)2 +(z′′− z)2) is the

screened quasi-2D Green’s function, K0 is the zero-th order
modified Bessel function of the second kind and b is the
disturbance wavenumber in the spanwise direction. In the
above integral expression ûzB is determined by the imposition
of boundary condition, namely the normal velocity on the wall
and at infinity, and the streamwise gradients of the normal
velocity at the entrance and exit of the domain.

Structural Solution

We use the 2D orthotropic Kirchhoff plate equation with addi-
tional terms to account for a dashpot-type damping and a uni-
formly distributed spring foundation, Thus, vertical displace-
ments of the plate, η(x,y, t), with the non-dimensionalised (by
free-stream dynamic pressure) perturbation-pressure loading,
p(x,y,0, t), at the (linearised) plate-fluid interface are governed
by

−p(x,y,0, t) = M ∂2η

∂t2 +D ∂η

∂t +K ·η

+Bx
∂4η

∂x4 +2Bxy
∂4η

∂x2y2 +By
∂4η

∂y4 (8)

where the non-dimensional coefficients of inertia, damping,
spring-foundation stiffness, flexural rigidity in the streamwise,
cross and spanwise direction respectively, are defined by

M =
ρ′mh′m
ρ′l δ
′
s
, D = D′

ρ′lU ′∞
, K =

K′δ′s
ρ′lU ′∞

2 ,

Bx =
B′x

ρ′lU ′∞
2
δ′s

3 , Bxy =
B′xy

ρ′lU ′∞
2
δ′s

3 , By =
B′y

ρ′lU ′∞
2
δ′s

3 .

Hinged boundary conditions are applied at the leading and trail-
ing edges of the compliant wall, hence

η(xcs,y, t) = η(xco,y, t) = 0,
∂2η

∂x2 (xcs,y, t) =
∂2η

∂x2 (xco,y, t) = 0
(9)

Boundary Conditions

Following [5], we make use of the Robin boundary conditions
at the entrance xs and exit xo of the fluid domain

∂ωx
∂x = iαωx,

∂ωy
∂x = iαωy,

∂uz
∂x = iαuz (10)

where the complex wavenumber α is the solution of the Orr-
Sommerfeld equation at the entrance and at the exit of the fluid
domain for real cyclical frequencies ωs and ωo = (Reo/Res)ωs,
respectively and for real spanwise wavenumber b.

The rigid-wall boundary conditions are ux(x,y,0, t) =
uy(x,y,0, t) = uz(x,y,0, t) = 0. Over the compliant-wall section
the velocity and stress components are matched between fluid
and solid; Thus, the linearized velocity-component boundary
conditions for xcs ≤ x≤ xco are

ux(x,y,0, t)+η(x,y, t) ∂Ux
∂z (x,y,0, t) = 0 (11)

uy(x,y,0, t) = 0 (12)

uz(x,y,0, t) =
∂η

∂t (x,y, t) (13)

The pressure perturbation on the wall is obtained by integrat-
ing the linearized z-momentum equation between the wall and
infinity where it must vanish; thus
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where, LH is the total height of domain, made large enough to
ensure that all disturbances vanish there. Thus at z = LH , ωx =
ωy = uz = 0 and ux = uy =ωz = 0. The first three conditions are
imposed directly to equations (2), (3) and (7), while the second
three are implicitly imposed through equations (4), (5) and (6).

Eigenvalue Form

We proceed by applying the decomposition,

K(x,y,z, t) = K̂(x,z)eibyeλt + c.c., (15)

with λ =−iω and c.c. the complex conjugate, to the linear sys-
tem of equations (2) - (6) taking into account the integral equa-
tion (7) and the boundary conditions and transform the system
equations to the generalized eigenvalue problem

[C2]{X̂}= λ [C1]{X̂}, {X̂}= {ω̂x, ω̂y, ûzB , η̂, φ̂}T , (16)



where φ̂ = λη̂, from which the eigenvalues λ and eigenvectors
{X̂} can be extracted. If the real part of an eigenvalue λ is pos-
itive, instability in time is predicted, otherwise the disturbances
decay with time. It it is remarked that the system equation (16)
is of a lower order than that which would ensue if the Poisson
equation were used since in the present method ûzB is evaluated
only on the boundary.

Numerical Solution

A fourth-order finite-difference method is used for discretisa-
tion in the streamwise direction and a Chebyshev pseudospec-
tral method is exploited for the normal direction, noting that
discretisation is not required in the spanwise direction due to
the modal decomposition applied in equation (15). The flow
domain is divided into M = Mw1 +Mc +Mw2 elements in the
streamwise direction, where Mw1, Mc and Mw2 are the num-
ber of fluid cells over rigid-wall 1, the compliant-wall and
rigid-wall 2 sections respectively, while N+1 points are used in
the normal direction for which a linear transformation is used
that maps the collocation points between the interval [1,0] and
[0,LH ] in the physical domain.

The Helmholz decomposition, equation (7), is approximated by
zero-order vortex sheets and zero-order source sheets. When the
source point~x′′ coincides with a field point,~x, the Green’s func-
tion in the second integral of equation (7) exhibits a logarithmic
singularity and logarithmic Gauss integration is used for the in-
tegral calculation instead of Gauss-Legendre. The trapezoidal
rule is used for the calculation of the integrals in expressions
(4) - (6) and (14). Finally, the Arpack library is used to extract
a significant part of the spectrum of equation (16), namely 3000
eigenvalues and their respective eigenvectors, using a relatively
large Krylov subspace of 9000 vectors.

Results

In the present paper we focus on the global stability of sys-
tem modes arising from each of the well-known travelling-
wave flutter (TWF) and Tollmien-Schlichting Waves (TSWs)
predicted to occur in Blasius boundary-layer flow over compli-
ant walls using local and global stability analyses of 2D dis-
turbances [13]. Accordingly, we choose the wall parameters in
such a way that the numerically calculated critical velocity for
the onset of the divergence instability in potential flow over a
finite compliant wall [12] is well above the free-stream veloc-
ity U ′∞ = 10m/s used herein. Throughout the results, the fluid
is water with density ρ′l = 1000kg/m3 and dynamic viscosity
µ′l = 1.37×10−3 Ns/m and the Reynolds number at the entrance
to the domain, Res, set to 3000 where we set ωs = 0.07755. The
spanwise wavenumber b was set to 0.05 and 0.1 in order to as-
sess the effect of the transverse disturbance wavelength on the
aforementioned instabilities. The isotropic compliant panel was
chosen to be of Kramer-type [1] with flexural rigidity, spring co-
efficient, thickness and density, B′x = B′y = B′xy = 8.89× 10−6

Nm, K′ = 115× 106 N/m3, h′m = 2× 10−3 m and ρ′m = 1000
kg/m3, respectively. Finally, the length of the upstream and
downstream rigid walls were chosen to be L′w1 = L′w2 = 0.01
m and the length of the compliant panel was L′c = 0.04 m.

Figure 2 shows the frequency eigen-spectrum of the FSI system
at spanwise wavenumber b = 0.05 for three levels of discreti-
sation; convergence of the solution for a 150× 65 mesh can
be deduced for the eigenfrequencies close to the real axis with
the exception of a branch in the range ωr > 0.25 and ωi < 0
that is a numerical artefact; this occurs for very low trans-
verse wavenumbers and arises because the kernel K0 and, even
more intensely its derivatives, become singular as b→ 0. As
in the corresponding 2D analysis of system disturbances, [13],

the eigen-spectrum consists of a variety of wave-type branches.
Depending on the position of the fluid-loaded structural modes
in the frequency spectrum, they can extract mean-flow energy
through resonance either with the wall-based TWF (M2 branch)
convective instabilities - seen in figure 2 as ωi > 0 - or the
fluid based TSWs (M1 branch) - not seen in figure 2 for these
wall-flow properties - giving rise to global instabilities in time.
The isolated temporally unstable mode (M3) seen in figure 2
is associated with the inlet boundary condition and is stable in
space (not shown). Figure 3, shows the frequency spectrum

Figure 2: ω-plane eigenvalue spectrum of the FSI system for
spanwise wavenumber b = 0.05 with three levels of discretisa-
tion

for both the compliant-wall and rigid-wall systems for b = 0.05
and 0.1. Note that the rigid-wall cannot support the TWF-type
modes (M2 branch labelled in figure 2). For the TSW modes
(M1 branch) that occur over both compliant and rigid walls it is
seen - as denoted by the arrows - that the larger spanwise wave-
length disturbance (b = 0.05) is less stable in time than that
with the smaller spanwise wavelength (b = 0.1), thereby rein-
forcing the notion, based upon Squire’s theorem, that 2D flow-
aligned TSWs are the most unstable in Blasius boundary-layer
flow over rigid or relatively stiff compliant walls (as is the case
for the properties used to generate figure 3). Wall-compliance
generally has a temporally stabilizing effect on the modes with
higher frequency (ωr > 0.08) than those of the least stable TSW
modes, while in the lower frequency spectrum(ωr < 0.08) com-
pliance is destabilizing.

However,the most prominent and important feature of the high-
frequency range of figure 3 is the globally unstable TWF-type
mode. For this temporal instability it is seen that decreasing
the transverse wavelength (from wavenumber b = 0.05 to 0.1)
- that would be forced by a compliant panel of finite width -
has a strong stabilising effect on the instability. This result sup-
ports the prevailing idea that the mechanism for TWF is pri-
marily two-dimensional. While figures 2 and 3 show that the
TSW mode is globally stable, it remains convectively unsta-
ble. In order to assess the effect of the compliant panel and of
the spanwise wavelength on its growth as it propagates down-
stream, we plot in figure 4, the spatial amplification of the least
stable TSW mode; this is achieved by computing the evolution
of normalised kinetic energy of the wave as it travels down-
stream. Comparing the compliant- and rigid-walled systems at
the corresponding transverse wavenumbers, it is seen that com-
pliance does work to reduce the spatial amplification of TSWs.
In addition, the compliant panels of finite width become more
effective in reducing the amplitude of TSWs of smaller span-
wise wavelength.



Figure 3: ω-plane eigenvalue spectrum of the compliant-wall
and rigid-wall systems, each for different values of the spanwise
wavelength disturbance

Figure 4: Spatial amplifications of the TSW modes shown in
figure 3 with blue and black arrows. The vertical lines signify
the leading and trailing edge of the compliant panel

Conclusions

This paper has presented a method for the analysis of the global
stability of 3D disturbances in Blasius boundary-layer flow over
a compliant panel in the transitional range of Reynolds number.
A significant advantage of the present formulation and its solu-
tion is the reduction of the number of system variables through
the use of a boundary-integral method that effectively solves
the Poisson equation in the direction normal to the flow. The
illustrative results presented show that the compliant panel ex-
erts a strong stabilising effect on the spatial amplification of
3D TSWs and this beneficial effect becomes bigger for smaller
spanwise wavelengths. Globally unstable TWF-type waves are
also predicted and it is shown that three-dimensional effects sig-
nificantly reduce their temporal growth rate. In addition, based
on the non-monotonic effect of the compliant wall on the tem-
poral stabilization of the eigenfrequencies, the transient growth
over a compliant wall may play a non-trivial role; confirmation
of this is left to a future work using the present system model.
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