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Abstract

Turbulent flow of a rough-wall pipe is simulated using Direct

Numerical Simulations (DNS) at low and medium Reynolds

number from the transitionally rough regime to the fully

rough regime. The rough surfaces simulated consist of three-

dimensional sinusoidal roughness elements. The size of the

roughness (roughness semi-amplitude height h+ and wave-

length λ+) is increased geometrically while maintaining the

height-to-wavelength ratio of the sinusoidal roughness element.

A method is developed to accurately calculate the roughness

function ∆U+ for the simulations conducted at low Reynolds

number. For this surface, the flow is fully rough when h+ ≈ 60

(simulated at Reτ = 540). This corresponds to k+s ≈ 4.1h+

where k+s is Nikuradse’s equivalent sandgrain roughness. A lin-

ear trend is observed when the ratio of the apparent wall shear

stress due to form drag on the roughness elements to the total

wall shear stress Rτ = τR/τT is plotted against the log of the

roughness height h+. This linear trend is also observed in the

transitionally rough regime. For all the rough-wall pipe simula-

tions conducted, Townsend’s [15] outer layer similarity hypoth-

esis holds true.

Introduction

Rough wall-bounded turbulent flow has been extensively inves-

tigated due to its many practical applications. Being able to

predict the drag caused by a given rough surface (i.e the sur-

face of a ship’s hull or aircraft fuselage) is critical to predicting

the propulsive requirements for many engineering system. The

current state of the art for predicting the drag increment due to

a given surface is to conduct scaled experiments. Replicas of

engineering surfaces are geometrically scaled and tested in a

laboratory facility to determine the influence of the roughness

on the flow (for example the turbine blade roughness investi-

gated by [16, 9]). Typically the equivalent sandgrain roughness

ks is used as the standard measure in determining how rough the

surface is. These results can subsequently be used to predict the

full-scale performance of the surface. Conducting such exper-

iments in the laboratory is time consuming and expensive, and

ideally it would be preferable to be able to predict ks directly

from the physical characteristics of the rough surface. In the

biomedical field, it is found that turbulence can occur in blood

flow (due to pathological conditions or in the descending aorta)

and its physiological effects are of medical interest.

With the advancement of computing power, Computational

Fluid Dynamics (CFD) is becoming an important tool in un-

derstanding wall bounded turbulent flows. It is now becoming

increasingly feasible to simulate flows at higher Reynolds num-

bers and to compute more complex roughness geometries. In

this paper, a turbulent flow through a rough-wall pipe is sim-

ulated from the transitionally rough to the fully rough regime.

The roughness elements of the pipe consist of three dimensional

sinusoidal roughness. Current work is inspired by [14] and [13]

who carried out experiments on a honed rough pipe and on a

rough boundary layer (where the roughness was geometrically

similar to the honed pipe) respectively. In these studies, the flow

varies from the hydraulically smooth to the fully rough regime

by changing the Reynolds number of the flow, which effectively

increases the roughness Reynolds number k+s = ksUτ/ν while

maintaining the physical size of the roughness. For the rough-

ness cases simulated in this paper, the roughness elements will

be geometrically scaled and simulated at Reτ = 180 and 540.

Throughout this paper, cylindrical coordinates are used where

r is the radial direction (measured from the centre of the pipe),

θ is the azimuthal angle, x is in the streamwise direction and

the arc length s = rθ. Capitalised variables (e.g., Uτ) indicate

time- and spatially-averaged quantities and the ‘+’ superscript

is used to denote viscous scalings of length (r+ = rUτ/ν), ve-

locity (u+ = u/Uτ) and time (t+ = tU2
τ /ν).

Numerical Procedure

The turbulent flow through a pipe is solved using the Navier-

Stokes equations for incompressible flow in Cartesian coordi-

nates:

∇ ·u = 0, (1a)

∂u

∂t
+u ·∇u =−

1

ρ
∇p+ν∇2

u+Fxi, (1b)

where u=(u,v,w) is the velocity in the x, y, and z directions, t is

time and Fx(t) is the uniform, time-varying body force required

to maintain a constant mass flux through the pipe. The code

used for this simulation is CDP, a finite-volume unstructured-

grid code [5, 8]. The diffusive and convective terms are ad-

vanced in time using the second-order, fully-implicit Crank-

Nicolson scheme. and continuity is enforced by the fractional-

step method by [7]. A Cartesian ‘O-grid’ mesh is used for the

simulations instead of a cylindrical polar mesh as it allows for

better control of the number of grid points in the azimuthal di-

rection, which is fixed for a cylindrical polar mesh at all wall

normal distances. The grid is uniformly spaced in the stream-

wise direction and a linear expansion is used in the radial direc-

tion to ensure sufficient resolution at the wall of the pipe. At the

centre of the pipe, the cells are sized to be approximately cube

shaped (∆r+ ≈ ∆rθ+ ≈ ∆x+). Computational details regard-

ing the mean grid spacing near the wall for each case are given

in table 1. It is important to highlight that for cases 02 018

and 05 035, there are only 4 and 8 grid points per roughness

wavelength and hence the topological features of the sinusoidal

surface are not fully resolved (a more faceted version of the

roughness is effectively simulated).

The no-slip condition is applied to the walls of the pipe and a

periodic boundary condition is applied to the ends of the pipe.

The length of the pipe is selected to be Lx = 4πR0 where R0

is the reference radius. The domain length used is longer than

the domain used by [4] which had a length of 10R0. Accord-

ing to [2] who conducted a domain length study, for a turbulent

pipe flow, the velocity and turbulence intensity profiles are con-

verged when Lx = 4πR0.

The flow of the smooth wall pipe at Reτ = 180 was initialised



Case Nr,θ Nx Nλx
∆r+ ∆x+

Reτ = 180

Smooth 13685 384 - 0.33 6.1

02 018 24864 512 4 0.12 3.5

05 035 24864 512 8 0.12 3.4

10 070 24864 512 16 0.11 3.2

13 094 24864 512 21 0.11 3.3

16 113 24864 512 26 0.16 3.2

20 141 19872 512 32 0.11 3.2

Reτ = 540

Smooth 94752 1152 - 0.23 5.8

20 141 104400 1152 24 0.14 4.4

40 283 104400 1152 48 0.13 4.1

60 424 108720 1152 72 0.15 4.0

80 565 108720 1152 96 0.14 3.8

Table 1. Computational details of the meshes used for Reτ = 180 and

540 simulations. Nr,θ is the number of elements in an (r,θ) plane, Nx

the number of elements in the streamwise direction and Nλx
the number

of elements per roughness wavelength. ∆r+ and ∆z+ ≈ ∆rθ+ are the

mean grid spacings in wall-units at the wall calculated using the local

Uτ. The largest cells are located at the centre of the pipe where ∆r+ ≈

∆rθ+ ≈ ∆x+.

using a parabolic curve with random fluctuations added. As

noted by [4], due to the low Reynolds number of the flow, the

random fluctuations can cause significant viscous dissipation

and hence relaminarisation of the flow. Therefore, a smaller

viscosity was temporarily used to allow the perturbations to

grow into turbulent fluctuations. This regime was run for 2500

timesteps with an initial timestep of ∆t+ = 0.036 to ensure sta-

bility. The timestep was progressively increased until a value of

∆t+ = 0.144, where the Courant-Friedrichs-Lewy (CFL) num-

ber was approximately 0.8. The viscosity was also progres-

sively increased during the same period. The simulation is then

run for 30T (where T = Lx/Ub is the flow-through time based

on bulk velocity) for the flow to become independent of any ini-

tial transients before gathering statistics of the flow field. The

rough wall simulations are initialised by interpolating the flow-

field of the developed smooth-wall pipe case. Again, a small

timestep and viscosity were initially used and slowly increased

until reaching a timestep of ∆t+ = 0.07. For the Reτ = 540

cases, the timestep used for the smooth and rough cases are

∆t+ = 0.09 and ∆t+ = 0.05 respectively. Data is collected ev-

ery 500∆t+ and the simulation is run for 20T for the Reτ = 180

cases and 5T for the Reτ = 540 cases to obtain well-converged

statistics.

The rough surface of the simulated pipe R is described by a

cosine function as given by,

R(x,θ) = R0 +hcos

(
2πx

λx

)

cos

(
2πR0θ

λs

)

(2)

where the reference radius of the pipe R0, is set to be the mean

radius of the pipe R, h is the semi-amplitude of the sinusoidal

roughness (half of the peak-to-trough height kt = 2h) and λx and

λs are the wavelengths of the roughness elements in the stream-

wise and azimuthal directions respectively. For all of the rough

cases, λx = λs and has a roughness semi-amplitude to wave-

length ratio of h/λx = 0.141. All the roughness elements have

a root-mean-square roughness height that is twice the rough-

ness semi-amplitude k+rms = 2h+ and an effective slope ES (de-

fined in [10] as the mean of the absolute streamwise gradient) of

0.361. However, for case 02 018 and 05 035, ES is underesti-

mated (10% less for case 02 018) due to the insufficient number

of grid points per roughness element.

Throughout the paper, the roughness cases are identified by the

following identifying code

1 0
︸ ︷︷ ︸

h+

1 4 1
︸ ︷︷ ︸

λ+

(3)

where the first two digits represent the roughness semi-

amplitude and the last three digits represent the streamwise or

spanwise wavelength of the roughness elements (both in vis-

cous units). In this paper, the roughness elements are geo-

metrically scaled for roughness semi-amplitude values of h+ =
2.5,5,10,13.3,16 and 20 at Reτ = 180 and for h+ = 20,40,60

and 80 at Reτ = 540.

Mean Velocity Profile

The roughness elements causes a downward shift in the mean

streamwise velocity profile when scaled in viscous units. This

shift is measured by the roughness function ∆U+ in the modi-

fied logarithmic law [6],

U+ =
1

κ
ln(y+)+C−∆U+ (4)

where we assume κ = 0.4 and C = 5.3 for current simulations.

The value of C used is 0.1 lower than the value used by [1] who

conducted numerical simulations at a lower Reynolds number

(Reτ = 314). Figure 1(a,d) illustrates the mean streamwise ve-

locity profile of the flow at Reτ = 180 and 540 respectively. The

smooth profiles are coloured in black while the rough profiles

are shaded grey, where surfaces with larger roughness elements

have lighter shades of grey. It can be seen that increasing the

roughness size causes a downward shift in the mean velocity

profile (as illustrated by the arrows). However, when plotting

the velocity defect profiles (see figure 1(b,e)), a remarkable col-

lapse is obtained in the outer layer of the flow with all the rough

profiles (at Reτ = 180 and 540) falling on the smooth profile

for values of y/R0 > 0.2. Interestingly, this collapse is also ob-

tained for the largest roughness element which has a reference

radius to roughness height ratio h/R0 of 0.148. This observation

is consistent with Townsend’s outer-layer similarity hypothesis

[15] which states that the turbulence at the outer region of the

flow is independent of the ‘roughness’ when scaled with the

roughness value of Uτ. To quantify the effects of the roughness

on the flow (particularly in higher Re applications), the rough-

ness function ∆U+ has to be measured accurately. ∆U+ is mea-

sured from the log region of the flow for cases at Reτ = 540.

However, at Reτ = 180, the log region of the flow, which is tra-

ditionally assumed to lie between 30 < y+ < 0.15δ+ (where the

boundary layer thickness δ+ is equvalent to the reference radius

R+
0 in a pipe), is poorly defined due to the low Reynolds num-

ber. Figure 1(c, f ) illustrates for the Reτ = 180 and 540 cases

respectively the mean velocity profile expressed in the correc-

tion constant form C−∆U+ =U+
− (1/κ) ln(y+). Under this

representation, the log region in the flow would appear to be a

horizontal plateau. In figure 1( f ) the horizontal dashed line co-

incides with the simulated cases while in figure 1(c), this region

is not observed as the profiles have a higher slope. Since the log

region of the Reτ = 180 simulations is ill-defined, the centreline

mean velocity is used to calculate ∆U+.

Transitionally Rough Regime to Fully Rough Regime

The roughness function are plotted in figure 2 against the equiv-

alent sand grain roughness k+s . The flow, which is initially in the

transitionally rough regime, approaches the fully rough regime

as the size of the viscously scaled roughness elements increases.

For h+ > 60, the flow is in the fully rough regime since the

variation of ∆U+ with k+s falls on to the fully rough asymp-

tote. Note that if we assume Nikuradse’s constant B = 8.5, this
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Figure 1. Mean streamwise velocity profile for the various roughness cases simulated at Reτ = 180 (top) and Reτ = 540 (bottom) in three different

forms. The mean streamwise velocity profile against the viscous wall normal location (a,d), the velocity defect (b,e) and the correction constant (c, f ).

Dash-dotted lines in (a) and (d) show U+ = y+ and U+ = (1/κ) log (y+)+C, where κ = 0.40 and C = 5.3 while dash line in (b) and (e) is at y/R0 = 0.2.

Roughness semi-amplitude h+ = 2.5,5,10,13,16 and 20 are simulated at Reτ = 180 and h+ = 20,40,60 and 80 are simulated at Reτ = 540

suggests that k+s = 4.1h+. The three-dimensional sinusoidal

roughness reaches the fully rough asymptote when k+s ≈ 180–

a value far greater than the one obtained by Nikuradse’s sand

grain roughness (k+s ≈ 40) [11]. One possible reason why

Nikuradse’s rough surface approaches the fully rough asymp-

tote faster than our simulated roughness is because of the sharp

edges of the sandgrain roughness causes the flow to separate at

smaller values of k+s . When flow separation occurs, the pressure

drag acting on the rough surface increases. Colebrook’s ‘univer-

sal’ roughness function [3] (shown by the solid line on figure

2) overestimates ∆U+ for sandgrain and three-dimensional si-

nusoidal roughness elements in the transitionally rough regime

and is therefore considered to be conservative.
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Figure 2. Roughness function ∆U+ against equivalent sandgrain rough-

ness k+s . Circle symbols are simulated at Reτ = 180 and square symbols

are simulated at Reτ = 540. Solid line: Colebrook ‘universal’ roughness

function [3]. Open circles: Nikuradse sandgrain roughness function

[11].

It is important to note that there are differences in ∆U+ for the

case with roughness height h+ = 20 when simulated at two dif-

ferent Reynolds number (Reτ = 180 and 540). The differences

are due to the low Reynolds number effect which is more promi-

nently observed in the smooth case (steeper ‘log’ region) than

in the rough case at Reτ = 180 (see figure 3). The higher centre-

line mean velocity of the smooth wall causes the overestimation

of ∆U+ by about 0.7. A better method to calculate ∆U+ would

be to compare the mean velocity profile of the rough-wall at

Reτ = 180 with the log-law. While this method would lead to

a better estimation of ∆U+ for case 20 141, it could potentially

result in negative values of ∆U+ for very small roughnesses.

Overall, the discrepancy in ∆U+ is small and for engineering

type applications, the difference in the calculated coefficient of

friction C f would be less than 5%.
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Figure 3. Mean velocity profile for the smooth case and 20 141 at

Reτ = 180 and 540. Blue box highlights the differences between the

simulations conducted at different Reynolds number.

In the fully rough regime, it is often assumed that the pres-

sure drag dominates the viscous drag in the flow. This was

demonstrated by [12], who conducted rough pipe experiments

on hemispheres and cones finding that in a fully rough flow, the

ratio of the apparent wall shear stress due to form drag on the

roughness elements to the total wall shear stress Rτ = τR/τT is



at least 0.8. To assess this finding, the ratio between the pressure

drag to the total drag is plotted against the roughness height h+

in figure 4. For the current sinusoidal roughness simulated, the

flow is fully rough when Rτ ≈ 0.75. An interesting observation

from figure 4 is that Rτ increases approximately linearly with

the log of h+ even in the transitionally rough regime. From our

linear curve fit, Rτ = 0.14log(h+)+0.15, we obtain h+ = 433

when Rτ = 1 and h+ = 0.34 (k+s ≈ 1.33) when Rτ = 0, which

seems to be reasonable estimates at the limits of Rτ. It is also

important to highlight that Rτ for case 20 141 at Reτ = 180 and

540 is roughly the same despite having different ∆U+ as men-

tioned previously.
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Figure 4. The ratio of the apparent wall shear stress due to form drag on

the roughness elements to the total wall shear stress Rτ = τR/τT against

roughness height h+.

Conclusion

Direct numerical simulation is simulated at Reτ = 180 and 540

over a three-dimensional sinusoidal roughness where the flow

ranges from the transitionally rough regime to the fully rough

regime. The low Reynolds number simulations at Reτ = 180

provides a reasonable estimate of ∆U+, which is attractive for

engineering applications as it is computationally cheap. For the

roughness geometry simulated, the flow approaches the fully

rough asymptote at a much larger k+s than Nikuradse’s sand

grain roughness [11]. A slightly higher ∆U+ is obtained when

the viscously scaled roughness (case 20 141) is simulated at

Reτ = 180 than the simulation at Reτ = 540 due to the low

Reynolds number effect of the flow. For the range of cases

simulated, an approximately linear trend is obtained when Rτ

is plotted against the log of h+.
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