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Abstract

Analytic models representing the coupling of small numbers of
ocean Wave Energy Converters (WECs) are presented. The
eigenmodes of collective oscillation under two conditions of
coupling are explained. A simple laboratory experiment illus-
trates that significantly different resonance curves occur when
pairs of machines are given different orientations relative to
the incoming wave direction, possibly exciting different eigen-
modes. The results suggest that arrays of WECs may collec-
tively operate in a significantly different way to that expected
from individual, isolated machines. This may offer potential
benefits, but also potential detriments if coupled oscillation
modes are not understood.

Introduction

Ocean wave-power machines or Wave Energy Converters ex-
tract renewable energy from ocean waves. They are currently
under development worldwide [1]. Once individual machines
are tested at full scale, more machines would be deployed in the
ocean nearby, creating arrays or ‘farms’ with a common con-
nection to the electricity grid. Most machines are intended to be
resonators; they have a natural frequency designed to be similar
to the frequency of ocean waves. When they resonate, oscil-
lating with large amplitude, they extract maximal power from
the passing waves. However, almost all designs assume the ma-
chines are isolated, not in arrays.

Unlike wind turbines, ocean wave-power machines have an ex-
ceptional ability to affect each other. This issue was first recog-
nised during the initial surge of wave-power research in the
1970s and 80s [2, 3, 4, 5] and has recently been of renewed
interest [6, 7] as developers plan arrays of multiple machines.
Each machine, once excited into motion, disturbs the local sea
surface and thus excites neighbouring machines to oscillate as
well (coupling). In some cases, there is an engineered coupling
via a common connection to shore-based generators. Although
there are several theoretical and numerical studies, there appears
to be no experimental data on wave-machine coupling. A recent
numerical study [7] found an enhancement to the collective ef-
ficiency of the machines of over 30 % in some cases, provided
the array was appropriately configured. However, inappropriate
arrangement resulted in performance up to 40 % worse.

Most theoretical and numerical models of WEC dynamics as-
sume the machines and their hydrodynamics can be represented
by sets of ordinary differential equations. Some of these mod-
els incorporate nonlinear as well as linear damping terms [8],
and the majority leave the co-efficients of the terms to be deter-
mined ultimately by full-scale experimentation. Nonetheless,
simple ordinary differential equation models of WECs can in
some cases be rigorously derived from the Navier-Stokes equa-
tions, subject to several untested assumptions [9]. Thus, irre-
spective of machine type, the dynamics of all WECs based on
the principle of resonance are typically represented in the liter-

ature by the classical, linearly-damped oscillator, given by

ξ̈+2ζω0ξ̇+ω
2
0ξ = Feiωt , (1)

where ξ is the machine’s displacement, ζ its damping ratio, ω0
its radian natural frequency, the force per unit mass exerted by
waves on the machine has amplitude F and radian frequency
ω, and overdots denote time derivatives. Linear damping would
only be rigorously justifiable in the case of laminar flow. Full-
scale WECs are large machines, many tens of metres in size.
Since the flow is inherently reciprocating, there is a zero mean
flow and the velocity periodically and sinusoidally returns to
zero and reverses. Experiments have shown that the flow in
such systems can be laminar at zero velocity, then transition
to turbulence during the deceleration phase, then re-laminarise
[10]. It is still unclear what damping models to use [11].

Useful power is extracted from the device by a Power Take-Off
(PTO) system. Assume that the effect of the PTO is felt by the
oscillator as another form of linear damping. Then the damp-
ing ratio is composed of two parts, ζ = ζµ + ζP, where ζµ is
the damping ratio due to all forms of ‘parasitic’ mechanical loss
from the system, including thermal losses, bearing friction, fluid
turbulence, water-wave radiation, etc, all assumed linear; and
ζP is the assumed-linear damping due to the PTO load, which
represents the ‘useful’ loss from the system. A detailed descrip-
tion of one PTO model is presented in [11].

Now consider two WECs that are identical linear damped os-
cillators as in (1) but are close enough to influence each other.
Clearly, the oscillations of one device would generate waves,
and more generally, pressure perturbations undersea, that will
excite its neighbour into motion. Furthermore, once the neigh-
bour responds to the perturbations created by the first machine,
it will in turn generate its own perturbations that will modify the
behaviour of the first device, and so on, in a theoretically infi-
nite series of reflections. This is one manifestation of the mul-
tiple scattering problem in physics, first studied in the context
of quantum mechanics and re-considered in a number of other
classical physics contexts, such as bubble acoustics [12, 13].

The issue of how to represent the influence of one device on the
other has received significant attention in the WEC literature,
and a number of theoretical models of coupled WECs exist, e.g.
[2, 4, 5] as well as recent numerical implementations [7].

Following the normal oceangraphic conventions, both the in-
cident ocean waves and waves emitted by the devices are as-
sumed to be linear and inviscid. Thus the oscillatory flow in the
sea is potential flow [2]. This implies that the velocity fields
of the devices can be linearly superposed. For the purposes of
the present paper, we represent the interaction of devices at a
particular spacing by

ẍ1 + γ12ẍ2(t− τ)+2ζω0ẋ1 +ω
2
0x1 = Feiωt ,

ẍ2 + γ21ẍ1(t− τ)+2ζω0ẋ2 +ω
2
0x2 = Feiωt , (2)



in which γ12 and γ21 represent the strength of the coupling, and
τ is the time delay owing to propagation from one device to an-
other. Furthermore, a new variable xi has been introduced to
emphasise that a self-consistent assumption has been applied
[12]. This implies that all multiple scattering reflections are
already taken into account, so that (2) represents a long-term
steady state. While it avoids treating an infinite sum of reflec-
tions, the disadvantage of the self-consistent assumption is that
the new variable xi is no longer physically related to the physi-
cal variable ξi [12]. Therefore, (2) should only be used to deter-
mine eigenfrequencies and not to predict actual device displace-
ments. The equations (2) are delay differential equations. In
general, the term γi j ẍi(t− τ) is itself an approximation derived
from the integral over the vertical direction of the potential flow
relation for a source of radially-spreading waves [2, 5], which
will consist of the hyperbolic functions in the vertical from clas-
sical Airy wave theory, and Hankel functions (complex Bessel
functions of the first and second kind) representing the radial
structure. The exact form of this potential flow relation will
depend on the boundary conditions. Since the boundary condi-
tions are specific to each WEC type, and an analytic representa-
tion is not necessarily available, we will not detail the potential-
flow relation here, but rather leave its integral representation as
the arbitrary coupling co-efficient γ.

The first approximation is to assume the devices are very close,
so that there is negligible propagation delay relative to an os-
cillation period. In most practical cases, γ12 = γ21 ≡ γ. The
solution of this system will consist of two eigenmodes, the first
of which can be found by defining a new variable, x+ = x1 +x2
and adding equations (2). The result is identical to the equation
of motion of a single device given by (1) with ω and ζ replaced
by, say, ω+ and ζ+, where

ω+ =
ω√
1+ γ

,

ζ+ =
ζ√

1+ γ
. (3)

This first eigenmode is usually called the symmetric mode and
represents the two devices oscillating in phase. In general, the
symmetric mode has a lower frequency and lower damping than
an isolated device. Meanwhile, the second, antisymmetric mode
is

ω− =
ω√
1− γ

,

ζ− =
ζ√

1− γ
. (4)

If devices could perform in the symmetric mode, they would
collectively operate at a lower frequency. This implies that to
match a given incident ocean wave frequency, a group of de-
vices arranged to resonate in symmetric mode could have indi-
vidual natural frequencies ω0 higher than that needed for an
isolated machine to resonate. Since the natural frequency is
generally inversely related to the size of a machine, this im-
plies machines could be smaller than if they had to operate in
isolation, with attendant savings in manufacture and installa-
tion. Furthermore, the lower damping may imply higher useful
power. However, once the time delay τ is considered, there are
no simple relationships such as (3) and (4), though for small τ,
approximations to these two modes will exist.

The type of WEC tested in the present paper is an OWC. Deriva-
tion of the approximate natural frequency of an OWC from first
principles is straightforward, albeit based on a long chain of as-
sumptions detailed by [9]; as a first approximation, the natural
frequency is given by

f0 = ω0/(2π) =
√

(g/L)/(2π), (5)

Figure 1: Wave pond showing two beams for mounting WEC
models. Wavemaker assembly is in foreground.

Figure 2: Wave pond geometry (dimensions in mm) showing lo-
cations of model WECs. Incident wavelength is approximately
410 mm.

where L is the length of the ‘tube’ of the OWC that is sub-
merged.

Experimental set-up

Illustrative experiments were set up in a ‘wave pond’ designed
for waves intermediate between the shallow- and deep-water ap-
proximations. The pond was a shallow rectangular pool of water
4 m long and 2 m wide and with a maximum depth of 0.15 m
(figure 1). The pond walls were a timber frame laid on a con-
crete floor. The walls and floor were lined with 0.5 mm thick
PVC swimming-pool sheeting.

The design wave height was 0.02 m peak-to-trough. A paddle-
type wave maker spanned one of the 2 m wide ends of the tank.
It was hinged at the pond floor. The paddle was made of core
flute with a treated timber perimeter, giving both rigidity and
light weight. The motor drove the paddle via a crank with a
horizontal amplitude of 0.01 m at the water surface at a fixed
frequency (noted below).

A wedge-shaped beach 0.75 m long at the end opposite to the
wave-maker effectively eliminated reflections. The pond layout
showing co-ordinates where model WECs were placed is shown
in figure 2.

The wave pond was filled to a depth of 0.110 ± 0.001 m.
A submersible video camera (GoPro Hero 3, 120 frame s−1)
imaged waves passing a ruler located at C5 on figure 2 with
an accuracy of ±1 mm within 95% statistical confidence lim-
its. The camera data were cross-checked against a capacitance-



type wave-height sensor made in-house. Though less accurate,
the camera technique was found to be more useful for mak-
ing measurements of water displacement within model WECs.
Waves were generated over 60 wave cycles in order to gen-
erate statistics on the incident wave quality in terms of wave
height and frequency. The fixed frequency was determined to be
1.88±0.01 s−1 within 95% confidence limits and the resulting
wavelength according to classical Airy wave theory for water of
intermediate depth was 0.410±0.002 m, which was consistent
with observation.

These tests determined that at the design frequency, waves were
periodic with straight crests and that there were no observable
reflections from the side walls or the beach. Nonetheless, it
must be emphasised that the performance of the wave pond was
neither perfect nor rigourously calibrated. For example, small
kinks in the PVC sheeting forming the floor were present ow-
ing to the way this product was originally folded, and thus the
depth suffered from perturbations of a few mm or a few per-
cent. Moreover, paddle-type wave-makers cannot perfectly re-
produce the underwater velocity profile of free-surface waves,
and will thus create a variety of other wavelengths in addition to
the intended wavelength. Hence, a rule-of-thumb in the wave-
maker community is to only make measurements more than
10 wavelengths from the paddle so that undesired wavelengths
have time to disperse. This was not possible since the entire
pond was only 10 wavelengths long. That is why the present
preliminary study is best classed as ‘illustrative’ rather than pro-
viding universal data. Furthermore, recalling the issue about re-
ciprocating turbulence canvassed above and the uncertainty of
scaling such systems, the flows generated in the devices were
not guaranteed to represent the full scale.

Model WEC devices were designed to have a scale less than
1/10 of the incident wavelength, and thus to be consistent with
the concept of ‘point absorbers’. As noted earlier, our model
WECs were OWCs. This type of WEC was chosen owing to the
simplicity of the OWC concept: no moving parts were required
in order to create a resonator. To test alternative WEC concepts
at such a small scale would have required problematic param-
eter matching. For example, heaving-buoy type devices would
have required matching of the size and buoyancy of small floats
and the stiffness of small springs to give devices able to resonate
in such shallow depths, a matching that proved impractical.

Since the incident waves had a 0.41 m wavelength, model OWC
devices were made 0.04 m in diameter. They were made of clear
acrylic tubing to enable visualisation of the water displacement
inside each model device. They were fixed with adjustable col-
lars to mounting beams spanning the pond width. As just noted,
the wave-maker produced a fixed frequency. Since the natural
frequency of an OWC is determined by the depth of the tube
that is submerged, the adjustable collars permitted the OWCs
to be tuned to the wavemaker frequency by altering their sub-
merged depth. The video camera was again used to measure
water displacements inside the models; here, however, the ac-
curacy decreased from±1 mm to±2.5 mm owing to the poorer
accuracy with which lines could be ruled on the models.

To allow initial transients to die away, measurements did not
commence until 10 wave periods had elapsed. Statistics on the
behaviour of model OWCs were generated by measuring the
water displacement inside the devices over 40 periods. A sec-
ond set of 40 data points was collected and the statistics pooled.

Results

A single device was set up and its submerged depth L varied to
determine its actual resonance. As shown in figure 3 (solid line),
the length L giving resonance was found to be 0.065 m. For the

input frequency of 1.88 s−1, the simple linear inviscid ‘pendu-
lum mode’ natural frequency given by (5) requires L = 0.070 m
for an inviscid resonance. Since from (5) L = 0.065 m would
correspond to a inviscid natural frequency of f0 = 1.96 s−1, the
measured resonant frequency is lower, which is consistent with
the usual influence of damping on any linear oscillator. By fit-
ting the data to the frequency response for a classical damped
oscillator, the damping ratio due to viscous losses under linear
theory, δP, can be roughly estimated to be 0.24.

Waves in the lee of a single device had no measurable reduction
of amplitude within experimental error. Since the device di-
ameters are 1/10 of the wavelength, normal principles of wave
theory suggest minimal reflection or interference of waves if
the devices were solid bodies rather than resonators. As a test,
the single OWC was also sealed at the bottom so that it was
in practice a solid cylinder with no ability to absorb power; its
only influence would then be to scatter waves by reflection. In
this case, again there was no discernable reduction of waves in
the lee of the device.

An array of six devices was then set up in two rows at co-
ordinates B and C, 8, 5 and 2 shown in figure 2. Overall, the
result was a reduction in measured peak-to-peak amplitude by
roughly 25-35% within the experimental error. This test com-
firmed the array did have a significant influence on the wave
height, though the test did not assess if the reduction in wave
amplitude was due to enhanced displacement of the devices in
the array, which would represent useful power extraction, or to
scattering of waves, which would be a loss.

A pair of devices was then set up to determine if there was sig-
nificant coupling between devices and, if so, to measure it in
detail. Two orientations were investigated. Devices were set
up 0.2 m apart with the line connecting their centres parallel to
wave crests (locations C4 and C6 in figure 2). This orientation
was thought suitable to excite the symmetric mode, which from
(3) was expected to have a lower frequency and damping than
the single device, recalling that (3) is not expected to quantita-
tively predict the behaviour owing to the time delay.

The pair of devices was also set up 0.2 m apart and perpendicu-
lar to wave crests (locations B5 and C5 in figure 2). This orien-
tation was thought suitable to excite the antisymmetric mode.

The half-wavelength spacing between the devices equalled five
device diameters. A half-wavelength spacing was recently
found to be optimal by a numerical study [7], though without
a clear explanation, and also appears similar to spacings pro-
posed by wave-power developers.

Both the parallel-to-crests and the perpendicular-to-crests ori-
entations of a pair of devices achieved significantly higher am-
plitudes than the single device, reaching factors of 2.53± 0.02
and 2.51±0.02 times the incident wave amplitude for the paral-
lel and perpendicular orientations respectively, compared with
the maximum of 1.97± 0.04 for the single device. Since this
gain in amplitude is about 25 %, the power per device removed
from the incident waves can be increased by roughly 50 % by
appropriate grouping of devices into an array.

The parallel orientation achieved a significant reduction in res-
onant frequency, from about ω/ω0 = 0.96 to ω/ω0 = 0.92.
Therefore, devices in this parallel orientation could be about
8 % smaller in their vertical dimension as well as deliver
the enhanced power just-noted. Meanwhile, the resonant fre-
quency for the perpendicular orientation was unchanged from
the single-device value of ω/ω0 = 0.96.

Amplitudes for the parallel orientation fell off rapidly as fre-



Figure 3: Peak displacements ξ̂ scaled by incident wave am-
plitude F , as a function of incident wave frequency ω scaled
by single-device linear inviscid natural frequency ω0 given by
(5). Solid line: single WEC device; Sparse-dotted line: a pair
of devices parallel to wave crests; Closely-dotted line: a pair
perpendicular to wave crests. Error bars show 95 % statistical
confidence limits.

quency increased from the resonant value, dropping almost to
the single-device values. A sharper peak implies a reduction
in damping, making a pair of parallel devices more sensitive to
shifts in the incident wave frequency. This is consistent with
the qualitative prediction of (3). Meanwhile the perpendicular
orientation exhibited a broader peak, consistently with (4), im-
plying increased damping and thus greater tolerance to the wave
climate.

As with the single device, tests were undertaken to assess the
importance of reflection versus resonance; by sealing the bot-
tom of one of the cylinders, a non-resonating device was cre-
ated. For the parallel orientation, C6 was sealed; for the per-
pendicular orientation, B5 was sealed. The tests were run at
L = 0.065 mm, i.e. ω/ω0 = 0.96. For the parallel orienta-
tion, the results (a scaled amplitude of 1.98± 0.02) were sta-
tistically indistinguishable at 95% confidence. However, for the
perpendicular orientation, the amplitude in the resonating de-
vice when the other device was made non-resonating fell sig-
nificantly, from 2.51± 0.02 to 2.00, and thus was statistically
indistinguishable from a single resonating device.

This implies that the parallel orientation delivered its benefit via
a surface-wave reflection mechanism, despite the device size
being less than 1/10 of the wavelength. Conversely, the perpen-
dicular orientation delivered its benefit via a coupled eigenmode
mechanism.

Conclusion

Laboratory experiments showed that appropriate arrangement
of a pair of model wave-energy converter devices significantly
enhanced the power extracted from waves. The power per de-
vice extracted from the waves and potentially available for elec-
tricity generation could be increased by roughly 50 % when de-
vices were paired a half-wavelength apart. An enhancement had
been predicted theoretically in the literature, but not demon-
strated experimentally.

A similar increase in power was achieved by devices oriented

both parallel and perpendicular to the wave crests. However,
significant differences in frequency response and in the under-
lying coupling mechanism were found between the parallel and
perpendicular orientations. Parallel orientation resulted in a
lower resonant frequency and a sharper resonant peak, implying
that somewhat smaller and thus cheaper machines could deliver
the same power, but also that the pair would be more sensitive
to changes in incident wave frequency. Perpendicular orienta-
tion did not significantly shift resonant frequency, but delivered
the enhanced power with a broader resonant peak, implying tol-
erance to changes in incident wave frequency.

Finally, it should be re-iterated that the present results are pre-
liminary and should be both repeated in a large wave basin un-
der turbulent conditions, and undertaken for larger numbers of
devices, as well as devices operating in different modes.
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