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Abstract

We present two variations of a novel method that models the
infinite-time response of the linearised motion of a cantilevered
plate in ideal flow including the effect of the downstream wake.
The inclusion of the wake effect in this eigenvalue problem is
achieved by modelling the wake using a single vortex. To test
the validity of the new models, we compare our results to those
of a time-dependent numerical simulation that we have devel-
oped and which includes a distributed vorticity model of the
wake. It is shown that the single-vortex models are capable of
predicting the same trend in wake effect, found using the dis-
tributed vorticity model, stabilising the system at lower mass
ratios and destabilising the system at higher mass ratios. It is
also shown that varying the fluid density while maintaining a
constant mass ratio and plate specific mass changes the criti-
cal velocity. Thus, a system which includes the wake cannot
be characterised solely by the mass ratio and non-dimensional
flow speed as is the case for the same system when the wake is
omitted.

Introduction

A new model is developed of the linearised fluid-structure inter-
action (FSI) of a cantilevered plate of length L in a uniform ax-
ial flow of velocity U∞ including the full wake generated by the
oscillating plate, shown in figure 1. Inviscid flow is assumed,
although viscous effects are implicitly incorporated through a
Kutta condition; thus, the FSI model is relevant to the infinite
limit of high Reynolds number flows that predominate in engi-
neering applications. At these high Reynolds numbers, previous
approaches have only been able to model this system via initial-
value problem methods or using quasi-boundary-value problem
methods that incorporate some form of time stepping, see [1-
5, 8]. The present approach yields the full spectrum of possible
system states after motions associated with system start-up have
been damped out or convected away downstream.

The present modelling is based upon that of [4] that
couches the governing equations in such a way that a
companion-matrix is formed from which the system eigenval-
ues can be extracted giving the infinite-time solution of the sys-
tem. Good agreement is found between this new method and
the numerical-simulation results also presented in [4] once suf-
ficient time has passed in the latter.

Good agreement continues to be found when the dis-
cretization of the wake is reduced, i.e. how often through a cycle

Figure 1: The fluid-structure system being examined. Those vortices
in the dashed box apply only to the full numerical simulation.

of plate oscillation we choose to shed the change in bound vor-
ticity. Coarsening the discretization leads to a wake model com-
prising a single, lumped wake vortex, at a downstream distance
represented by the product of a full period of oscillation and the
free-stream flow speed. Startlingly, this very simple model con-
tinues to yield very useful quantitative approximations of the
effect of the wake on the stability of the flexible plate.

The present model is used to show that, as predicted
by several previous studies, the wake is stabilizing for single-
mode flutter instability whereas it is destabilizing for the modal-
coalescence type instability associated with plates of high mass
ratio (plate length for given mass per unit area and fluid den-
sity). However, a new effect is found: if the thin plate condition
is approached whilst keeping the mass ratio constant, the over-
all phenomenology of the wake effect changes. Thus, whilst
maintaining the plate material properties constant we find that
reducing the plate length while commensurately increasing the
fluid density the aforementioned effects of the wake on single-
mode flutter and modal-coalescence no longer hold. Overall,
these results demonstrate that when wake effects are included,
this canonical FSI system can no longer be fully characterised
by just the non-dimensional mass ratio and flow speed.

Theoretical Modelling

The computational modelling continues from that developed in
[4], in which the set-up of the initial- and boundary-value prob-
lems are described in detail. A one-dimensional Euler-Bernoulli
beam is used to model the cantilever that in discretised matrix-
form is equated as

ρh[I]{η̈}+B[D4]{η} = −{δp}. (1)

η is the vertical deflection of any of the N mass points along
the beam, [I] is an identity matrix and [D4] is a 4th-order spatial
differentiation matrix. ρ, h, and B are respectively the density,
thickness and flexural rigidity of the beam and δp is the pres-
sure due to the fluid acting on the beam. A boundary-element
method that utilises first-order vortices is used to model the fluid
velocity: vortices are employed as the cantilever is a lifting sur-
face. The surface is discretised into N panels of length δx=L/N
and the bound vortex-strengths γ are distributed over each indi-
vidual panel. The solution for the bound vorticity comes from
enforcing a boundary condition of zero normal-flow across the
plate and is formulated as

{γ} = [IN ]−1
{

U∞θ+ η̇
av−uNb

}
. (2)

[IN ] contains the normal influence-coefficients and the addi-
tional boundary conditions of a Kutta condition at the trailing
edge of the plate and continuity of vorticity strength between
panels. ρf is the fluid density, θ is the linearised panel slope and
η̇av is the average velocity between beam mass points. uNb is
the normal velocity induced by the wake vortices at the mass
points and is calculated as

[
INb
]
{Γb}, where Γb are the wake

vortex strengths at discrete points in the wake trailing down-
stream of the cantilever and

[
INb
]

is a matrix containing the



normal influence coefficients of the wake on the plate. The un-
steady Bernoulli equation is used to quantify the pressure of the
fluid and wake, the matrix form of which is

−{δp} = 2ρfU∞vT ′ + ρf
∂φ

∂t
, (3)

where the tangential-perturbation velocity vT ′ and the unsteady
velocity-potential ∂φ/∂t are equal to

[
IT ]{γ} and

[
Iφ
]
{γ̇} re-

spectively. The wake is linearised and so the wake vortices
only move horizontally and hence they induce zero tangential-
velocity at the mass points, for example see [4] and [8]. Substi-
tuting equation (2) into equation (3) and expanding gives,

−{δp} = 2ρfU2
∞[A

−]{η} + ρfU∞[A+]{η̇}
+ ρfU∞[B−]{η̇} + ρf[B]{η̈} − {δp}b, (4)

where [A] and [B] are rearranged forms of influence coefficient
matrices. Depending on how the wake is modelled determines
the formulation of {δp}b: the other pressure terms are indepen-
dent of the wake model. Substituting equation (4) into equation
(1) and rearranging for {η̈} yields

{η̈} = [E]{η̇}+[F]{η}− [G]{uNb}− [H]{u̇Nb}. (5)

Below we detail two methods of solution of equation (5) and
the three different wake models that we employ that lead to dif-
ferent forms of the matrices [E], [F], [G] and [H].

Full Numerical Simulation

This model is fully described in [4]: the vertical displacement
of the mass points is calculated iteratively at a series of time
steps after an initial deflection of the plate is applied to begin
the simulation. A wake vortex is shed every time step and has
a strength equal to the difference between the total vorticity at
time t = 0, the vorticity bound within the plate at time t, and the
sum vorticity contained within the wake (excluding the vortex
forming at time t). At each time step this enforces the Kelvin
condition, that there is no change in circulation within a closed
system in time. Vortices enter the wake a distance U∞δt from
the trailing edge and maintain this distance between other wake
vortices - see figure 1 - where δt is the time step size. A cut-off
length of the wake is set as 2L and wake vortices that convect
pass this point are removed and have their strengths summed
into a far-wake strength variable. For this method equation (2)
remains unchanged and so following the derivation of equation
(4) above {δp}b for the full numerical simulation is

−{δp}b
ns = −2ρfU∞ [A]{uNb}−ρf [B]{u̇Nb}. (6)

The forms of the matrices in equation (5) for this method are
fully detailed in [4].

Eigenanalysis

Here a boundary-value type model is employed to calculate
the infinite-time solution of the fluid-structure problem using
a state-space method. Equating the state-space variables as
w1(t) = η(t), w2(t) = η̇(t) = ẇ1(t) and therefore ẇ2(t) = η̈(t)
enables the reduction of the order of the problem from second-
to first-order and dictates the formulation of the (2N × 2N)
companion-form matrix. Once the companion form has been
assembled the 2N eigenvalues are extracted: these have both a
real and imaginary component that quantify the system stability
and oscillation frequency respectively. To enable formulation
of an infinite-time solution that includes wake effects, the wake
is approximated as a single vortex: this allows uNb in equation
(2) to be described entirely in terms of η and η̇. This enables
simplification of equation (5) as the matrices [G] and [H] are no
longer required. The strength of the wake vortex based on two
different interpretations of the Kelvin condition are

Γ
b = ∑ γ̇δxT and Γ

b = −∑γδx. (7a, b)

Model 1: Equation (7a) enforces that the wake vortex must have
a strength equal to the change in bound vorticity during an oscil-
lation of the cantilever. The wake vortex is placed a distance Lw
downstream of the trailing edge where Lw =U∞T , T being the
period of oscillation. Equation (7a) is applied in equation (2);
inserting the latter into equation (3) the pressure contribution
from the wake is

−{δp}b
1 = −ρfLw(2U∞ [P]{η̇}+2 [Q]{η̈}+[R]{η̈}), (8)

where matrices [P], [Q] and [R] are further rearranged influence
coefficients. Inserting equation (8) into equation (4) and rear-
ranging into the form of equation (5) yields

[E]1 = [C]−1
1

[
ρfU∞(

[
A+
]
+
[
B−
]
−2Lw [P])

]
, (9)

[F]1 = [C]−1
1

[
2ρfU2

∞

[
A−
]
−B[54]

]
, (10)

[C]1 =
[
ρh[I]−ρf[B]+2ρfLw[Q]+ρfLw[R]

]
. (11)

An initial guess for Lw is made and several iterations of the
system are required to finalise the location of the wake vortex.
The temporal change in wake strength present in equation (7a)
gives rise to a jerk term that is a third-order time derivative of
η: to retain the (2N× 2N) shape of the state-space companion
matrix we neglect this term - the validity of this omission is
tested using the initial-value method in the results section below.

Model 2: Equation (7b), used in [2], states that the vorticity
in the wake is equal and opposite to that in the cantilever at all
times. Applying this equation in the same fashion as in Model
1 above, the pressure contribution from the wake in this case is

−{δp}b
2 =−ρf(2U2

∞ [P]{η}+U∞ [Q+R]{η̇}+[S]{η̈}), (12)

where [S] is a further rearranged form of influence coefficient
matrices. Inserting equation (12) into equation (4) and rear-
ranging into the form of equation (5) yields

[E]2 = [C]−1
2

[
ρfU∞(

[
A+
]
+
[
B−
]
− [Q]− [R])

]
, (13)

[F]2 = [C]−1
2

[
2ρfU2

∞(
[
A−
]
− [P])−B[54]

]
, (14)

[C]2 = [ρh[I]−ρf[B]+ρf[S]] . (15)

The jerk term does not arise in this second model as there is no
time differential of the lumped-vortex strength in equation (7b);
therefore, Lw is also absent from equation (7b) as there is now
no need to balance the additional time term - however, the wake
vortex is still located at Lw from the trailing edge of the plate
and it is still required to iterate for its final magnitude.

Results

The focus of the results is upon the critical (lowest) speed after
which flutter of the flexible plate first occurs. Previous stud-
ies (e.g. [4]) have shown that the behaviour of the FSI sys-
tem can be described by two control parameters, namely the
non-dimensional flow speed Ū = U∞(ρh)3/2/(ρfB1/2) and the
fluid-to-plate mass ratio L̄ = ρfL/(ρh) and thus we use these
parameters herein. To validate our modelling we first compare
our results to those in [4] that were comprehensively assessed
against those of other computational and theoretical models in
the literature. Thereafter we present results of various simpli-
fications to the model for the purposes of generating our more
versatile boundary-value models. Finally the effects of varying
the density of the fluid and length of the cantilever while main-
taining a constant mass ratio are presented. In what follows



Figure 2: Results from the numerical simulation of the initial-value
model for (a) fully discretised wake model, and (b) wake modelled by
a single vortex. In each of these the no-wake, full (with jerk) and no-
jerk results are shown by - - -, ? and • respectively. (c) and (d) show
the plate deflections over one oscillation for L̄ = 1 and 10 using the full
numerical simulation model.

Ū∗c and Ūc are the critical non-dimensional flow velocities at
which instability occurs with and without a wake respectively.
When plotting plate deflections the non-dimensional forms of
distance along the plate and the plate deflection are x̄(= x/L)
and η̄; in the latter, values of η are normalised by the value of
initial maximum-deflection for the initial-value problem or the
overall maximum-deflection for the boundary-value problem.

Initial-value (Numerical Simulation) Results

Table 1 lists the critical flow speeds predicted by the current
model without and with a wake, comparing the latter with the
corresponding results in [4] along with percentage difference
between the two. Very good agreement is seen and by compar-
ing these critical speeds with those predicted in the absence of
a wake, the effect of the wake on the FSI system is seen to be
stabilising for plates with low L̄ and destabilising for plates with
high L̄; an explanation for this is given in [4].

To examine the effect of the jerk on the system and to
judge the appropriateness of its omission in the two boundary-
value models, we assessed simpler versions of the initial value
model. First, the fully discretised wake was replaced by a sin-
gle vortex and, second, the jerk term was removed from both
the fully discretised wake and single-vortex models. Figures 2
(a) and (b) show the variations of critical speed with mass ra-
tio for these simplifications along with the results of the fully
discretised wake (in (a) only) and the results in the complete
absence of a the wake. Overall these results show that (i) when
jerk is omitted, the model over-predicts the critical speed, and
(ii) when a single-vortex is used to represent the wake, the crit-

L̄ Ūc Ū∗c[4] Ū∗c % Difference
0.6 9.65 11.47 11.65 1.57
1.0 5.50 5.95 5.73 3.70
1.2 4.60 4.73 4.68 1.06
1.4 4.01 3.95 3.97 0.51
1.6 3.63 3.44 3.47 0.87

Table 1: Dependence of critical speed on mass ratio (non-dimensional
plate length) and comparison between current results and those of [4].

Figure 3: (a) A comparison of instability-onset flow speeds obtained
from the two boundary-value models, + using equation (7a) (with jerk
omitted) and • using equation (7b), with the results of numerical sim-
ulations, ? with a fully discretised wake and - - - with no wake. (b)
and (c) show the plate deflections over one oscillation for L̄ = 1 and 10
using model 1.

ical speed is under-predicted. However, it is evident that the
single-vortex approximation, either with or without jerk, yields
results that are very close to those when a full discretisation of
the wake is applied and certainly good enough for engineering
predictions and the basis to develop a more versatile boundary-
value solution for the system incorporating a wake.

Figures 2 (c) and (d) show the instability-mode deforma-
tions at low and high mass ratios for which the effect of the wake
is respectively stabilising and destabilising, a difference that
also occurs for the models that omit the jerk term. At the lower
mass ratio flutter is dominated by second-mode content while at
the higher mass ratio the flutter displays both second- and third-
mode contributions; the former is described as a single-mode
flutter and the latter a modal-coalescence flutter. These findings
agree with the results of [4] and [8]. It is also noted that as the
mass ratio increases, yielding critical modes of higher order, the
effect of the wake on the stability of the flexible plate becomes
negligible.

Boundary-value Results

The predictions of instability-onset flow speed for the two
boundary-value models developed in this paper are shown in
figure 3 (a) and compared to the model without a wake. Also in-
cluded in this figure is the result from numerical simulations us-
ing a fully discretised wake and which also appeared as the solid
line figure 2 (a); this is the most complete model against which
the more economical boundary-value results are assessed. It is
seen that the first boundary-value model, developed using equa-
tion (7a), yields results that compare well against this bench-
mark for L̄� 1 while the second model (that uses equation (7b))
gives results that are very similar to those when the wake is ab-
sent. Figures 3 (b) and (c) show the mode shapes predicted
by the first boundary-value model and correspond to figures 2
(c) and (d) obtained using full numerical simulation; again very
good agreement is seen. Thus, the first boundary-value model
provides an accurate but simpler alternative for the prediction
of the long-time response of the system when the mass ratio is
approximately greater than unity.



Figure 4: Variation of critical velocities with fluid density for con-
stant L̄ values. Each line is the critical velocity given by: numerical
simulation with ? for a fully discretised wake and - - - for no wake,
and • the first boundary-value model with a wake (noting that with the
wake effects suppressed, this model gives the same results as the numer-
ical simulation without a wake). The limit of the thin plate assumption
where L/h ≥ 10 is shown by the thick vertical line. (a) L̄ = 0.6, (b)
L̄ = 2.0.

Fluid Density Variations

Although presented in non-dimensional form, all of the pre-
ceding results were obtained using air ρf = 1.2 kg/m3 as the
fluid. The wake models developed in this paper have also been
used with fluids of much higher densities to assess whether
the non-dimensionalisation of the system is complete. Figure
4 shows the variation of the non-dimensional instability-onset
flow speed for two mass ratios, L̄ = 0.6 and 2.0, in which the
fluid density is varied but holding constant the value of ρfL and
maintaining the plate material properties at ρh = 1.355 kg/m2.
The figure includes the numerical-simulation results from the
fully discretised wake and the case where the wake is omitted,
along with the predictions of the first boundary-value model that
was found to give a more accurate representation of wake ef-
fects in the foregoing sub-section. There is no variation of crit-
ical speed when the wake is absent and this demonstrates that
L̄ and Ū fully describe the system. However, when the wake is
included, the critical speed does depend upon the fluid density
and the commensurate change in plate length; as density is in-
creased the critical speed asymptotes to that when the wake is
absent. In figure 4 (a) the dependence upon fluid density (and
plate length) is only found for the numerical simulation results
because the boundary-value model was seen to be inappropri-
ate at L̄ � 1 while in figure 4 (b) both the full and approximate
methods give variations to Ūc that are in reasonable agreement.
In total these results show that the wake effects - stabilising for
low L̄ and mildly destabilising for high L̄ - only apply for fluids
with low density as compared with that of the structure.

To explain these new findings, we report that the posi-
tion of the single wake vortex in the boundary-value problem is
found to move further downstream for higher-density fluids to a
distance of between 2 and 2.5 flexible-plate lengths, whereas in
lower-density fluids the vortex is between 0.05 and 0.3 flexible-
plate lengths downstream of its trailing edge. This explains why
the critical flow speeds converge to no-wake results as the fluid
density is increased; the wake vorticity is too distant for it to
have an appreciable effect. For a given mass ratio, the distanc-
ing of wake-vorticity effect occurs because an increase in fluid
density requires a shortening of the plate length. This latter re-
quirement yields an increase to the oscillatory frequency of the
flexible plate as it supersedes the effect of increased fluid inertia
due to the higher density of the fluid used. The higher frequency

then reduces the effective interaction of the wake and the mo-
tion of the flexible plate. Finally, the present results show that
when the wake is modelled, the non-dimensionalised FSI sys-
tem is no longer completely characterised by Ū and L̄ because
the fluid-to-solid density ratio ρf/ρ also becomes a control pa-
rameter.

Conclusions

In this paper a number of theoretical and computational models
have been developed to investigate the effect of the wake on the
stability of a cantilevered flexible plate in an ideal flow. Numer-
ical simulations when a fully discretised wake is modelled show
that the wake is stabilising(destabilising) for low(high) mass ra-
tios as shown in [4]. The effect of the jerk (rate of change of ac-
celeration) term is examined and its omission is shown to yield
more stable predictions than those of the full system. Numeri-
cal simulations using just a single vortex to represent the wake
are shown to yield predictions of instability onset that are in
reasonable agreement with those of the faithfully represented
distributed wake-vorticity model.

New models are developed that use the state-space method
developed in [4] and [6] to solve the boundary-value problem
when wake effects are incorporated. These new models show
that it is possible to qualitatively capture the effect of a wake
on a cantilevered plate using only a single wake vortex. In par-
ticular it is shown that a wake-shedding model based upon the
Kelvin condition yields values of critical speed that are in very
good agreement with full numerical simulations (after sufficient
time has passed for transients to be convected away) when L̄� 1
for a much lower computational cost.

Finally a new result is found concerning the non-
dimensional characterisation of the FSI system. In the absence
of a wake, only two non-dimensional control parameters, the
flow speed Ū and the mass ratio L̄, fully describe the system
behaviour, but when wake effects are included the fluid-to-solid
density ratio must additionally be accounted for. The present re-
sults show that, for any fixed mass ratio, when the fluid-to-solid
density ratio is low the wake effects on stability described in the
opening paragraph are found to hold. However, as the density
ratio is increased these wake effects decrease and for fluids with
high density the wake has a negligible effect.
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