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Abstract 

The Reactive Rotational Molding (RRM) is a manufacturing 

method for the production of one-piece hollow plastic part where 

the polymer synthesis and shaping of piece is carried 

simultaneously using heat and bi-axial rotation. The main 

drawback of RRM is poor control of the process due to the high 

number of influent parameters. In these conditions, the 

optimization of the process is quite complex. During RRM, it is 

very important to predict the fluid flow in order to be able to 

obtain a piece with homogeneous shape and with high quality. 

For this study, we have applied Smoothed Particles 

Hydrodynamics (SPH) to simulate the polymer flow during this 

process taking into account surface tension force. To implement 

force tension surface, the interface between polymer and air is 

tracked dynamically by seeking the particles constituting this 

border by algorithm developed by Barecasco, Terissa and 

NAA[1,2] in two and three dimensional. Then, we use 

Lagrangian interpolation or fitting circle to reconstruct the 

interface curve in two dimensions, and we apply the fitting 

sphere method in three dimensions to reconstruct the boundary 

surface. By using the basic method of SPH for fluid modeling, 

and a combination of 2D and 3D free curve or surface detection 

algorithm with interpolation method, we can simulate polymer 

flow phenomena during RRM with expected result. 

Introduction  

Reactive Rotational Molding (RRM) is shear-free and pressure-

free used to create hollow. In this process, the polymer synthesis 

and piece shaping are carried simultaneously [3]. Modeling RRM 

is a challenge because a multiple parameters involved during this 

process like the rate of chemical reactions, viscosity variations 

during polymerization and fluid flow during crosslinking. These 

phenomena are complex and require detailed study to modeling 

the process. Previous work by our team permits the simulation of 

thermoset polyurethane in two and three dimensional 

configuration using Smoothed Particle Hydrodynamics [4]. In 

order to complete and enhance the solver’s team because we have 

observed in the Team’s model as it works can generate roughness 

or particle agglomerates on the internal surface. This phenomenon 

affects the flow of material and its adhesion process that can be 

slowed and even stopped. It will also consider this problem for 

example by integrating new model or criterion then seeing if 

taking into account the viscoelasticity of the material and / or 

surface tension, this phenomenon can be reduced. In this study, 

the surface tension force will be integrated in SPH solver in order 

to simulate the polymer flow during RRM. 

Zhang [5] proposed a new surface tension method where free 

surface boundary can be tracked dynamically by using an 

algorithm developed by Dilts and Haque [6-7]. However, this 

method is quite difficult to implement it and particularly in three 

dimensions. Later, Marrone[8]presented an algorithm based in 

the properties renormalization matrix in the first step and the use 

of a scan cone around the expected normal vector of the fluid 

surface to make a further check if there is any particle covering 

the test particle. Recently, Barecasco and Al[1,2] developed 

simple algorithm which permit to track the interface using a sum 

of normalized relative position vectors from neighbouring 

particles to the test status of SPH particle. 

Finally, the interface curve is reconstructed locally with 

Lagrangian interpolation and Fitting circle in 2D and fitting 

sphere has been used to reconstruct the surface curve in 3D 

configuration, respectively. 

Numerical Model 

The SPH is a fully Lagrangian, grid free method in which a 

smoothing kernel is introduced to approximate functions and 

their spatial derivatives originating from the interactions with 

neighboring particles and has been applied to a wide range of 

flow problems[8-10]. In SPH, the fundamental principle is to 

approximate any function A(r) by: 

                               ( )   ∫ (  ) (      )                     (1) 

h is smoothing length and W is weighting or kernel function 

which has compact support. 

In present simulation, the cubic spline kernel has been used: 
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Where 

q = r/h,    is    (   
 ) in 2D and   (   ) in 3D. 

The equations governing the evolution of fluid quantities are 

expressed as summation interpolants using a kernel function W 

with smoothing length h, as:  
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Where: ρa,va are respectively the density and the velocity of 

particle  ; ma and vb are the mass and the velocity of particle b. 
   ⃗⃗⃗⃗⃗

  
  ∑  (

  
  

 
 

  

  
 )  ⃗⃗    

   ⃗⃗⃗⃗⃗

  
  ∑  (

  
  

 
 

  

  
 )  ⃗⃗   

 ∑
  (     )   

    

(
 

   

    

   
)   ⃗   ⃗    ( ) 

Where: Pa, Pb,ηa, ηb are pressure and viscosity of particles a and 

b respectively and g represents the gravity. 

And  ⃗: surface tension surface and is given by : 

 ⃑     ⃗⃑                                               ( ) 

    coefficient of surface tension ;  : the curvature ; ⃗⃑ : normal 

vector of surface ;   :  surface delta function and it's equal to 

1/  where:   represents particle spacing. 
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Where ka and ka are respectively the conductivity of particle a and 

b, Tab is the difference between the temperatures of particles   

and  .  

To describe the thermodynamic behaviour of the fluid, we 

have associated to this system an equation of state: 
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Where: P0 is the magnitude of the pressure and ρ0 is the reference 

density. P0 is given by: 
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With Cs: speed sound at the reference density and   is a problem 

dependent parameter. 
In our simulations, to prevent inner fluid particle from penetrating 
the wall, we employ an artificial repulsive force. Moreover, with 
repulsive forces, only one layer of particles is placed on the wall 
with identical mass and density to inner particles.  

The boundary conditions adopted in our study produce no-slip 

conditions. In this configuration, the reactive fluid particles 

cannot adhere to the boundary particles. To simulate the adhesion 

of the RRM on the mold surface, Riviere[4] developed a model 

to fix the fluid particles when they reached a certain viscosity and 

when they are exposed to a certain distance from the mold (or the 

fixed material) during a certain time.  

To make a faster calculation, we used a linked-list grid method to 

reduce the time of calculation. The method to get the position and 

velocity for each particle in a time step uses Newmark [11] 

integrator to advance in time, the variables are calculated 

according to: 
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Where   and   represent position and velocity, respectively. 

Moreover       and       . Temperature and density are 

updated according to (12) and time step    depends on the 

Courant Friedrichs Lewy (CFL) condition [12].  

Surface Tension 

Generally, surface tension forces are caused by the unbalanced 

molecular dynamic forces at the free surface, in the region 

between two different immiscible fluids (polymer-air). In these 

regions the polymer molecules are forced to shift in the direction 

of the normal surface towards the liquid itself causing a 

minimization of the liquid's curvature at the surface. 
Obviously, the surface tension force act only in the border 
polymer-air, so first of all, we must detect dynamically all the 
particles belonging to the interface.  

Tracking Free Surface Boundary Polymer-Air 

The interface is detected dynamically by finding all boundary 

particles using algorithm developed by Barecasco and Al. In this 

method, the domain is representing by overlapping of spheres (si) 

where si represents a SPH particle centred at the particle's 

position xi and ri is sphere's radius. Then, we check if some part 

of segments of this sphere is or not covered. If there is some 

piece of it is not covered by the spheres of its neighbors, then it is 

a boundary particle. Otherwise, it’s inner particle. Due to the 

non-uniform properties of SPH particles, we use a scan cone 

around the cover vector of the fluid surface which checks, if there 

is any covering particle. 

The cover vector can be written as: 
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The particle is boundary particle if: 
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Where: θi, the angle of cone; 

First, we used a mold with simple geometry; a cylinder rotating 

around its main axis (Figure 1.). The cylinder radius is 10 

centimetres and the rotational speed is 7.5 revolutions per minute 

(rpm). The optimum angle       , permit to detect all the 

boundary particles.  

 

 

 

 

 

 

Figure 1. detection of boundary particle for a cylinder mold rotating 
around its main axis. The mold is shown in blue, the inner particle in 

green and boundary particle in red colour. 

To test the efficiency of the algorithm to detect the border air-

polymer in three dimensional configurations, we use cylinder as 

mold, as shown in the figure 3, containing the reactive fluid and 

the scan cone angle          

 

 

 

 

 

Figure 2. Detection of boundary particle in three dimensional 

configurations. The mold is shown in blue, the inner particle in green and 
boundary particle in red colour. 

Reconstruction of the Curve Interface 

Two Dimensional 

Before reconstruction of the curve, the system coordinates are 

transformed into local coordinate system, in order to guarantee 

the interface curve will have one-valued in the local coordinate 

system. 

The origin o’ of the local coordinate system is given by:  
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Where j is the particle index of neighbors of boundary particle i 

and Ni is total number of neighbors of boundary particle i. 

The relation between the local coordinate (x’,y’) and the 

coordinate system (x,y) is given by: 

                                                      (  ) 
                                                      (16) 

 

Where:   represents the angle between the angle between the two 

axis x and x’. 

First, we use the fitting to reconstruct the boundary curve in the 

local coordinate system. A measure of the fit of the circle with 

the center being at the point (       
,        

) and the radius being 

“r” to the boundary particles points P(xi,yi) is given by summing 

the squares of the distances from these points to the circle. The 

measure is formalized as follow: 
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Where: the index i indicate the boundary particle. 

 

Mold: 1502 particles 
Fluid:  21069 particles 
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We note the solving (17) =0 for r yields to: 
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If we obtain        
,        

 by some other method, we can obtain 

good value of r by using the formula (21). 

In this study, we use average of intersections method to fit circle 

to data points in order to obtain the coordinate of our circle [13]. 

The coordinates of the center of circle obtained by this method 

are given by: 
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We use another method: Lagrangian interpolation to reconstruct 

the interface curve. 

The Lagrange interpolation is formulated as follows: 
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Where: 
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j is particle index including boundary particle i and its neighbors 

on the boundary. 

The curvature and the normal in local coordinate are obtained as: 
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The coordinate of normal vector in the original system are given 

by:  
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Figure 3.Particle position of 2D circle (radius=0.1m) with the normal 

vector on the surface. 

The both methods give an accurate value of the normal (figure 

3.). In the fitting circle method the value of the curvature is 

constant and it’s equal to 10 which is the inverse of circle radius. 

On the other side, the value of curvature obtained by Lagrangian 

method is slight different from the 10 and the curvature value 

converges to 10 by increasing the number of the boundary 

particles and the relative errors for the 252,314, 628 and 1286 

boundary particles are 0.084, 0.051, 0.013 and 0.00301% 

respectively. 

Three Dimensional Configurations 

The boundary surface is reconstructed using fitting sphere 

method. Before reconstruction of the curve, the system 

coordinates are transformed into local coordinate system, in order 

to guarantee the surface curve will have one-valued in the local 

coordinate system. 

The origin o’ of the local coordinate system is given by:  
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Where j is the particle index of neighbours of boundary particle i 

and Ni is total number of neighbours of boundary particle i. 

The local three-dimensional basis vectors were calculated, by 

equation 26: 
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To fit sphere from data points, we use method fitting sphere 

[14].The basic problem is to find a circle that best represents the 

data in some sense. With our sphere described by: 
(   )  (   )  (   )                                        (27) 

Where: a,b,c and R are the coordinate of the center and the radius 

of sphere.  

This relation can be written as: 

                                                 (28) 

Where  

               ;        ;        ;        

Putting    
    

    
    

  , the system to resolve is reduced to: 
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The resolution gives          and the coordinate of sphere: 
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To validate the current method for surface tension, the 

computations of normal vector and curvature of the interface on 

sphere is studied.  

 

 

 
 

 

 

 

 

Figure 4. Particle position of 3D sphere (radius=0.1m) with the normal 

vector on the surface. 
The reconstruction surface method used in our study give an 

accurate value of the normal and curvature. Indeed, the value of 

the curvature is constant and it’s equal to 10 which is the inverse 

of circle radius (figure 4.). 

Validation 

We studied one benchmark, the two dimensional broken dam 
problems, to show the capability of our SPH solver to implement 
the effect of surface tension. The problem consists of a rectangular 
(H x L) column of fluid confined between a fixed wall and a 
temporary wall (dam) [15]. We compared our results with those 
obtained experimentally by Martin and Moyce [16] for the 
collapse of a water column. The computational domain has been 
discretised by 4344 particles and the fluid viscosity is set at 0.001 
Pa.s (water at 20°C). 
In figure 5., the non-dimensional surge front positions of the 
collapsing dam        are plotted against the non-dimensional 

time     (
 

 ⁄ )
 

 ⁄
 where a represents the width of the water 

column (m), t the time (s), and g the gravitational force.   

 

 

 

 

 

 

 

 
 

 

Figure 5. Surge front for experiment (●) and SPH simulation (■).  
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There is a reasonably good agreement between the experimental 

results and SPH method. So, we can applied this solver to 

simulate the reactive fluid flow during RRM. 

Some Numerical Results 

2D Simulations 

We performed 2D simulations of an increasing viscosity fluid in 

a mold and taking into account the tension surface force. To test 

the efficiency of the algorithm of implementation of surface 

tension force, we used a simple geometry. The cylinder radius is 

10 centimeters and the rotational speed is 7.5 revolutions per 

minute (rpm) figure 6.The initial spacing particle is 5.10-4 meter. 

The mold is represented of approximately 1258 solid particles 

and its temperature is set at 80°C. The polymer which is a 

polyurethane is symbolized of approximately 17 000 fluid 

particles, the initial temperature is set at 25°C. With the initial 

amount of polymer, the final part wall thickness should be 

approximately of 5 millimeters. At the end of the simulation, 

around 10 particles should form the part thickness. 

Once the reaction starts, the viscosity increases according to 

rheokinetik model[17]used in this study, which gives relationship 

between viscosity and rate of reaction. The parameters of 

adhesion models chosen are: ηadhe= 9Pa.s, tadhe=3 s and Δ=1.5*dx. 

The coefficient of surface tension σ is set to 30mN.m-1. 

 

 

 
 

 

 

 

 
Figure 6. 2D cylinder (19000 particles). 

In spite of, we have implemented the surface tension effects; the 

inner surface is not well smooth. To remedy to this problematic, 

we must incorporate new criterion in the artificial adhesion 

model in order to reduce the roughness and agglomerates 

particles. 
3D Simulations 

Like to the two dimensional simulations, we conducted the 

numerical study with simple mold geometry; cylindrical mold 

shape has a length of 20 cm and a diameter of 10 cm. The 

parameters of adhesion models chosen are: ηadhe=30Pa.s, 

tadhe=1.25 s and Δ=2*dx. The coefficient of surface tension σ is 

set to 30mN.m-1.The initial spacing particle is 2 mm which 

corresponds to 4mm in final part. The mold is represented by 

20000 solid particles and its temperature is set at 80°C. The 

polymer which is polyurethane is represented by 90000 of fluid 

particles; the initial temperature is set at 25°C (figure 7). The 

evolution of viscosity follows the same law which is used in two 

dimensional configurations.    

 

 

 

 

 

 

 

 

 

Figure 7. 3D cylinder (130000 particles). 

 

Conclusion 

The current method has been successfully applied to simulate 

RRM using SPH solver taking into account free surface tension 

force. Surface tension force is given explicitly in the current 

model. After detecting the boundary particles, the interface is 

fitted locally by using Lagrangian interpolation polynomial or 

fitting circle in 2D and by using fitting sphere in 3D, 

respectively. 

The fitting sphere and fitting circle gives an accurate estimation 

and was validated in sphere domain and a represent an alternative 

method to moving least square in 3D and Lagrangian 

interpolation in 2D respectively. The advantage of these methods 

is a simple to implement mainly than MLS method in 3D. 

Unfortunately, the implementation of surface tension effects did 

not remedy the problem of agglomerates particles in the inner 

surface of mold. To reduce the roughness and agglomerates 

particles, we would to take account of the non-Newtonian 

character of polymer using viscoelastic models describing the 

behavior of our material during the process.    

 

References 

[1] Barecasco, A., Terissa, H. & Naa, C.F., Simple free-surface 

detection in two and three-dimensional SPH solver,2013, 

arXiv:1309.4290. 

[2] Terissa, H., Barecasco, A. & Naa, C.F, Three-Dimensional 

Smoothed Particle Hydrodynamics Simulation for Liquid Droplet 

with Surface Tension,2013, arXiv:1309.3868.  

[3] Crawford, R.J. & Throne J.L. Rotational molding technology, 

P.D. Library Eds. New York, William Andrew Publishing, 2002. 

[4] Riviere, S., Khelladi, S., Farzaneh, S., Bakir, F., & 

Tcharkhtchi, A.,Simulation of polymer flow using smoothed 

particle hydrodynamics method, Poly. Eng. Sci.,53, 2013, 2509-

2518. 

[5] Zhang, M., Simulation of surface tension in 2D and 3D with 

smoothed particle hydrodynamics method, Jour. Comp. Phys., 

229,2010, 7238-7259. 

[6] Dilts, G.A., Moving least-squares particle hydrodynamics II: 

Conservation and boundaries, Intern. Jour. Num. Meth. Eng., 48, 

2000, 1503-1524. 

[7] Haque, A. &Dilts, G.A., Three-dimensional boundary 

detection for particle methods, Jour.Comp. Phys.,226, 2007, 

1710-1730. 
[8]Marrone, S., Colagrossi, A., Le Touzé, D. & Graziani, G., Fast 

free-surface detection and level-set function definition in SPH 

solvers, J.Comp Phys, 229, 2010, 3652-3663 

[9] Monaghan, J.J. ,Simulating free surface flows with SPH, J. 

Comput. Phys,110, 1994,399-406. 

[10] Monaghan, J.J., Smoothed particle hydrodynamics, Rep. 

Prog. Phys. 365, 2006,199-213. 

[11]Ata,R. & and Soulaïmani, A. ,A stabilized SPH method for 

inviscid shallow water flows, Int. j. num meth in flui, 47, 2005, 

139-159. 

[12] Cleary, P., Ha, J., Alguine, V. & Nguyen, T., Flow modelling 

in casting processes, App Math Mod, 26, 2002,171-190,. 

[13] Umbach, D., & Jones, K.N.,A few methods for fitting circles 

to data, IEEE Trans. Ins. Meas., 52, 2003, 1881-1885. 

[14] Ahn, S.J., Rauh, W., and Warnecke, H.-J.r., Least-squares 

orthogonal distances fitting of circle, sphere, ellipse, hyperbola, 

and parabola, Pat. Recog., 34,2001, 2283-2303. 

 [15] Violeau, D., Issa, R., Numerical modelling of complex 

turbulent free‐surface flows with the SPH method: an overview, 

Int. J. Num. Meth. Flu., 53,2007, 277-304. 

[16] Martin, J., Moyce, W., Part IV. An experimental study of the 

collapse of liquid columns on a rigid horizontal plane, Ph. Trans. 

.Roy. Soc. Lond. Series A, Math.  Phys. Sci., 244,1952,312-324. 

[17] Farzaneh, S., Riviere, S., and Tcharkhtchi, A., Rheokinetic 

of polyurethane crosslinking time‐temperature‐transformation 

diagram for rotational molding, J. App. Pol. Sc., 125, 2012, 

1559-1566. 

 

http://arxiv.org/abs/1309.4290
http://arxiv.org/abs/1309.3868

