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PIV of a Precessing Cylinder Flow
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Abstract

We report new results of PIV measurements of the flow in a
precessing cylinder at aspect ratios between 0.457 and 2.615,
tilt angles up to 5◦ and Reynolds numbers ranging from 500 to
46 000. The first Kelvin mode is forced at its first resonance; its
shape and saturation amplitude is extracted and found to agree
well with theory. Geostrophic motion is observed and quanti-
fied.

Introduction

Precession—simultaneous rotation around two axes as sketched
in figure 1—is a way to excite inertial waves in rotating flows. It
has geophysical relevance, being considered one possible driver
for the geo-dynamo, i.e., the creation of Earth’s magnetic field.
Also, liquid fuel in spin-stabilized spacecraft may be subject to
precessional forcing, destabilising the whole spacecraft.
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Figure 1. (Left) A cylinder rotates at Ω1 around its aies, which is tilted
by an angle θ with respect to the platform’s axis. The platform rotates
at Ω2. (Right) Flow visualizations of the initial, forced mode, and the
onset of instability.

Linear, inviscid theory [4] suggests that precessing flow may be
decomposed into a sum of Kelvin modes [8]. A Kelvin mode is
resonant (i.e. grows to a large amplitude) if its axial wavelength
matches the container height. At large enough Reynolds num-
bers, it may also become unstable. Johnson [3], Malkus [6] and
Manasseh [7] observed a rapid transition from laminar to turbu-
lent flow. This so-called catastrophic collapse may be explained
by several competing theories: triadic resonance, instability of a
Kelvin mode, boundary layer instability, or modification of the
base flow by geostrophic motion eventually leading to centrifu-
gal instability. Figure 1 shows typical flow visualizations of the
initial mode shape and the onset of instability.

Figure 2. Experimental setup

The present experiments are the first in a series aiming to con-
clusively explain the resonant collapse. We will extend the work
of Lagrange et al. [5] and Meunier et al. [9] using a significantly
improved setup. With the recent commissioning of a large rotat-
ing platform we can now mount the complete PIV system (laser,
camera, computer) along with the precessing cylinder in the ro-
tating frame. This allows us to tilt the laser light sheet with the
cylinder and therefore avoid errors at large tilt angles.

In particular, we focus on the question of how much geostrophic
(i.e., axisymmetric or mean azimuthal) motion is created by
non-linear interaction of the Kelvin modes. Characterizing the
geostrophic flow is important because it changes the basic flow,
which in turn detunes the resonances of the Kelvin modes. So
far, no theory has succeeded in predicting its amplitude or spa-
tial structure. Also, our data will allow validation of accompa-
nying direct numerical simulations [1]. Data were obtained for
both the initial transient after commencement of forcing and the
steady state long after the tilt.

Experimental Setup and Procedure

Figure 2 shows our experimental setup. A cylinder, filled with
water and spinning at Ω1, is mounted on a DC motor’s axis.
A rotary encoder measures the motor’s angular velocity with
an accuracy of 0.1%. The cylinder is made from Perspex and
has an inner radius R = 46.2mm±0.1mm. Its effective height
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Figure 3. (Left) steady state flow, time averaged axial vorticity, in 1/s; h = 0.457, Re = 2500, ω = 1.886, θ = 2◦. (Right) Theoretical inviscid shape,
normalized vorticity.

H can be varied by using different insets. Aligned with the axis
and facing the cylinder’s top, a Redlake ES 11000 11 megapixel
camera records PIV images. Motor, cylinder and camera are
mounted on a frame which can be tilted to an angle θ of up to
15◦ by a linear stepper motor. The accuracy of the tilt angle is
0.1◦. A light sheet created by a 250mJ dual-pulse NdYAG laser
(Big Sky Laser) and cylindrical lenses is arranged such that
it illuminates a cross-section of the tilted cylinder at a height
zPIV = z/H. The coordinate system is fixed at the centre of the
cylinder. Together with a PC controlling the camera, all of the
above is mounted on a large platform rotating at Ω2.

Initially, the cylinder was spinning upright to establish a solid
body rotation. After 5 minutes, 10 image pairs of 3100×
2672px were recorded. This would later allow to verify the
flow was indeed in solid body rotation initially, and to find the
centre of rotation, which is required for the PIV evaluation (out-
lined below). Then the cylinder was tilted (defining t = 0) and
200 image pairs (the maximum permitted by available memory)
of the transient flow were recorded at 1 Hz. Once the images
were downloaded to the hard disk—about 5 minutes after the
tilt—the flow was assumed to have reached a steady state and
another 50 image pairs were recorded.

Four dimensionless parameters govern the problem: the forc-
ing amplitude ε = Ω2 sinθ/Ω and frequency ω = Ω1/Ω, the
Reynolds number Re = ΩR2/ν, and the cylinder aspect ratio
h = H/R. Here, Ω = Ω1 +Ω2 cosθ is the cylinder rotation rate
in the laboratory frame of reference.

All experiments reported here were set up to force the (n, l, m) =
(1, 1, 1) mode. The first integer n corresponds to an axial wave
number k = (2n− 1)h/π which is chosen such that the Kelvin
mode fits exactly into the height of the cylinder and becomes
resonant. The second index l denotes the radial wave number,
or the branch of the dispersion relation. Finally, precession can
only force an azimuthal wave number m = 1.

PIV and Data Processing

Although the camera tilts with the cylinder, it is fixed in the
table frame of reference and therefore records mainly a solid
body rotation. To reveal the secondary flow, the solid body ro-
tation is subtracted by rotating the image pairs before applying
the PIV cross-correlation. This removes the large velocity gra-
dients which would otherwise render PIV almost impossible.
The time separation between the image pairs was chosen such

that the cylinder rotates ≈ 10◦. We found this to be marginal or
even too long for large forcing amplitudes; future studies will
consider a rotation of ≈ 5◦ instead.

Here, rotating around the correct centre is crucial to not intro-
duce a spurious mean velocity. We apply a semi-automatic pro-
cedure to find the centre of rotation using the images recorded
before the tilt: the centre is first estimated by fitting an ellipse
to the cylinder wall, and then iteratively corrected such that the
space and time averaged velocity becomes zero.

The rotated images were then processed by a two-pass cross-
correlation algorithm with image shifting/deformation de-
scribed in [10]. Using 50% overlap and interrogation window
sizes of 128 and 64px, respectively, yields 82×95 velocity vec-
tors. The large window size was chosen to alleviate bad vectors
due to the rather long time separation, and hence, large particle
displacements between the double images.

Results

We measured at tilt angles of θ = 0.5,2 and 5◦ and aspect ra-
tios h = 0.457,1,1.835 and 2.615. Data at 15◦ is currently
being acquired. The cylinder and platform rotation rates were
0.443 ≤ Ω1 ≤ 1.886rad/s and 0.209 ≤ Ω2 ≤ π/2rad/s (maxi-
mum rotation rate is 4π rad/s), respectively, yielding Reynolds
numbers of 500≤ Re≤ 46000.

For the case h = 0.457, Re = 2500, ω = 1.886 and θ = 2◦, Fig-
ure 3 shows contours of axial vorticity of the time-averaged
steady state flow in a plane zPIV = −0.26. Its structure is no
different from the instantanous flow field; no instability is ob-
served nor expected at this Reynolds number. We find a typical
(1, 1, 1) mode shape consisting of two counter-rotating vortices.
It generally agrees well with linear, inviscid theory shown on
the right. The theory predicts a vorticity (and velocity) field
symmetric about the y-axis. However, in reality the shape is
slightly twisted, which has been already observed in previous
studies [2, 9].

For the same case, velocity vectors and contours of velocity
magnitude are shown in figure 4. Again, the spatial structure
matches the theory very well (not shown). However, in the ex-
periments, we find the position of maximum transverse velocity
is slightly shifted to the right, which is even clearer in the nor-
malized velocity profile plotted in figure 5. This indicates a
mean azimuthal velocity, i.e., geostrophic flow. It has been ob-



Figure 4. Steady state flow, time averaged sectional velocity field in
cm/s, showing every 6th vector, and contours of velocity magnitude.
Same parameters as in figure 3.

served before and is thought to be a nonlinear effect, hence the
present observation is consistent with previous work. A slight
deviation of the measured velocity near x/R =±1 is caused by
reflections at the cylinder wall (no image masking was used).
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Figure 5. Steady state flow, normalized sectional velocity magnitude
along a line at y = 0, PIV (symbols) vs. theory (line). Same parameters
as in figure 3.

Instantaneous velocity fields were projected onto the theoreti-
cal shapes fi and gi of the Kelvin modes as described in [9],
yielding amplitudes Ai and angles θi for the ith mode:

(vr,vθ) = εΩR
∞

∑
i=1

Ai cos(kizPIV )

[
fi(r)
gi(r)

]
e j(θ−θi)+ c. c. (1)

The temporal evolution of the mode amplitude after the tilt is
depicted in figure 6. The forced Kelvin mode clearly grows
exponentially and reaches a saturation amplitude of −0.4 after
about 40s, while the other mode’s amplitudes stay close to zero.

This in agreement with linear, viscous theory, which predicts
that at a resonance the forcing term will be balanced by the vis-
cous damping from the boundary layers. The saturation value
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Figure 6. Temporal evolution of the first four Kelvin mode amplitudes
after the tilt. Same parameters as in figure 3.
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Figure 7. Saturation amplitude of the forced Kelvin mode for h = 0.457
at different Re and tilt angles. PIV (symbols) vs. theory (line).

of the amplitude A1 is extracted for each Reynolds number and
tilt angle. This is plotted in figure 7 and compared to the lin-
ear, viscous theory of Meunier et al. [9]. The amplitude indeed
grows as

√
Re because the viscous damping scales as 1/

√
Re.

There is a correct quantitative agreement although there is no
fitting parameter.

In contrast to Kelvin mode amplitudes, the amplitude A0 of the
geostrophic flow is difficult to quantify. No theory exists for the
radial profile, therefore the choice of basis functions to project
on would be somewhat arbitrary. Here, we simply define A0
as the non-dimensionalized maximum value of the azimuthally
averaged azimuthal velocity:

A0 = max
r

[
1

εΩR
1
N

N

∑
i=1

vθ,i(r)

]
(2)

The temporal evolution of A0 is plotted in figure 8. After the tilt,
A0 grows exponentially just as A1, also saturating after about
40s. It appears to follow the trend of mode 1. Note that the
corresponding numerical study [1] also shows a correlation be-
tween the azimuthal mean flow and mode 1. The radial pro-
file of the geostrophic flow becomes parabolic during the first
10 s with a maximum azimuthal velocity occurring close to
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Figure 8. Temporal evolution of the geostrophic flow after the tilt. Cir-
cles show the amplitude, i.e., the maximum azimuthal velocity. Its non-
dimensional radial position is depicted by the triangles. Same parame-
ters as in figure 3.

r/R = 0.5. Thereafter, the flow retains this shape and merely
grows in amplitude.

Note that even though A0 is non-dimensionalized by εΩR, one
cannot compare this value directly to the amplitude of the
Kelvin modes since their basis functions fi and gi may be
much larger than unity. In dimensional units, the maximum
geostrophic flow for this case is ≈ 0.1cm/s, which is about 10
times smaller than the maximum transverse velocity caused by
the forced Kelvin mode. This also explains the increased noise
in the data of figure 8 as compared to figure 6.

Conclusions

We presented new results of an experimental study of preces-
sion driven flow in cylinder. Mounting the complete PIV sys-
tem in the rotating frame allows for accurate measurement even
at large tilt angles. Amplitudes of the forced Kelvin modes and
of the geostrophic flow are extracted. The amplitude of forced
Kelvin modes is in good agreement with the viscous theory in
the absence of instability for small tilt angle or Reynolds num-
ber. There is a mean azimuthal geostrophic flow which is al-
ways retrograde and cannot be predicted by inviscid theory. Fu-
ture results will allow to give the dependence of this mean az-
imuthal flow with tilt angle and Reynolds number in both lam-
inar and turbulent regimes. This mean azimuthal flow is very
important in rotating flows because it is very often observed al-
though inviscid theories do not predict its existence. It has a
large effect on rotating flows as it changes the basic flow and
thereby detunes all the possible resonances. Our simple exper-
iment is thus an easy way to characterize this puzzling mecha-
nism of creation of geostrophic motion.
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