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Abstract 

The aim of the present investigation was to examine the 
Reynolds number dependence of the critical vortex-induced 
vibration (VIV) point for cylinders in a pivoted system. For 
translational systems, the existence of a critical mass ratio for 
cylinders undergoing vortex-induced vibration has been well 
established. At mass ratios below this critical point, the reduced 
velocity at VIV lock-out tends to infinity, resulting in the 
resonance forever condition as described by the authors first 
reporting this phenomenon. For translating cylinder VIV, a 
Reynolds number dependence of the critical mass ratio has been 
noted. A variation of the critical mass ratio from 0.36 at low 
Reynolds number, tending toward 0.54 at higher values has been 
observed. To the author’s knowledge, no such Reynolds 
dependence has previously been reported for pivoted cylinders. 
The approach adopted in the present investigation involved 
measuring the VIV response of a positively buoyant pivoted 
cylinder being towed at very high reduced velocity at different 
Reynolds numbers. High reduced velocity was attained by 
establishing a very low system natural frequency and the 
Reynolds number was controlled via the towing velocity and the 
cylinder diameter. The key finding of this study is a Reynolds 
number dependence of the critical force moment ratio in the 
pivoted cylinder arrangements with values similar to that of the 
critical mass ratio in translational systems. Over the Reynolds 
range of experimentation (5.3 x 103 to 6.5 x 104), the critical 
force moment ratio varied from 0.43 to 0.53. 

Introduction  

Fluid flow past a circular cylindrical object generates vorticity 
due to the shear present in the boundary layer. This vorticity in 
the flow field coalesces into regions of concentrated vorticity, 
known as vortices, on either side of the cylinder. Flow above a 
threshold Reynolds number allows perturbations in the flow 
upstream to cause one of the vortices to grow larger. This vortex, 
with higher flow velocities and accompanying lower pressures, 
draws the smaller vortex from the opposing side across the wake 
centreline. The opposite vorticity from this smaller vortex severs 
the vorticity supply of the larger vortex, allowing it to convect 
downstream [20]. This process is repeated in the reverse sense, 
leading to alternating vortex shedding from the cylinder. 

When the cylinder is elastically restrained and natural 
frequencies are introduced, a fluid-elastic instability known as 
vortex-induced vibration (VIV) results. The time-varying non-
uniform pressure distribution around the cylinder resulting from 
the vortex shedding causes structural vibrations both inline and 
transverse to the flow. Near the natural frequency of the 
structure, the vortex-shedding frequency synchronises with the 
natural frequency and the vibration frequency. One of the 
primary mechanisms responsible for this synchronisation is the 

change in hydrodynamic mass, as demonstrated in the 
experiments of Vikestad [21]. The range of reduced velocity over 
which this synchronisation occurs is known as the lock-in range. 
Mostly, the ensuing vibrations are undesirable, resulting in 
increased fatigue loading and component design complexity to 
accommodate these motions. The transverse vibrations also result 
in higher dynamic relative to static drag coefficients. 

With decreasing mass ratio, an increase in the amplitude response 
is generally evident [17]. Also, the smaller the mass ratio, the 
larger the relative influence of the hydrodynamic mass on the 
vibration response of the structure. 

Various definitions for the mass ratio are widely employed. In 
this work, the mass ratio is defined as the ratio of the oscillating 
structural mass, m, to the displaced fluid mass, md, as 
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The structural mass, m, includes any enclosed fluid, but excludes 
the hydrodynamic mass. Note that the mass ratio is equivalent to 
the magnitude of the ratio of the weight, W, and buoyancy, B, 
forces since  
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The mass ratio parameter influences both the amplitude and 
frequency response of the cylinder. With higher mass ratios (e.g. 
a cylinder vibrating in air, with a mass ratio O(100)), changes in 
added mass are relatively insignificant due to the low density of 
the fluid. The natural frequency then remains relatively 
unchanged throughout the lock-in range. When the fluid medium 
under consideration is much denser (e.g. a cylinder vibrating in 
water), distinct changes in the natural frequency are observed. 
The increasing natural frequency observed with increasing 
reduced velocity is directly attributable to the decreasing added 
mass throughout the lock-in range [18, 21]. An overview of the 
characteristics of low mass damping VIV is given in the review 
paper by Gabbai & Benaroya [2]. 

Since the hydrodynamic mass variation is largely responsible for 
synchronisation of the shedding and vibration frequencies, 
typically much wider lock-in regions are experienced at low mass 
ratio [17, 21].  The limit of this trend is found at the critical mass 
ratio of around 0.54 [5], below which there exists no lock-out 
point and VIV occurs at all velocities above the initial lock-in. 
This is the resonance forever condition as described by the 
authors first reporting this phenomenon.  

Using the approach adopted by Khalak and Williamson [10] a 
frequency equation may be obtained by substituting harmonic 
force and response expressions in the forced linear oscillator 
equation of motion. The resulting frequency equation, the ratio of 
vibration frequency to the system natural frequency, is  
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where CA is the potential added mass coefficient (equal to one for 
a circular cylinder) and CEA is the effective added mass 
coefficient which is related to the force in phase with 
acceleration.  

Govardhan and Williamson [3] discovered that in the lower VIV 
response branch the effective added mass was approximately 
constant at a value of CEA = −0.54. The frequency equation 
(equation 3) then becomes  
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From equation 4, it is clear then, that with small mass ratio, 
approaching the value of 0.54, a large frequency ratio results for 
the lower VIV response branch. As the mass ratio approaches the 
critical value of mcrit = 0.54, the frequency ratio tends to infinity 
and consequently the lower branch can never be reached. The 
upper VIV response branch then continues indefinitely, resulting 
in the infinite resonance regime. The lower response branch 
essentially ceases to exist below the critical mass ratio. 

The initial discovery of the critical mass ratio resulted from the 
examination of elastically constrained cylinder experimental 
data[3]. Subsequent transverse amplitude tests on translational 
cylindrical systems where restoring forces have been removed 
(i.e. with the reduced velocity, Ur) have been conducted [4]. 
At very high reduced velocity (i.e. as Ur) resonance is seen 
below the critical mass ratio. Above the critical mass ratio, 
smaller amplitude forced vibrations are evident. The 
development of understanding of the critical mass ratio for a 
single degree of freedom cylindrical system is chronicled well in 
the publications by Govardhan and Williamson [4, 5] in which a 
critical mass ratio 0.542 ± 0.01 is claimed.  

The Reynolds number has been shown to have a significant effect 
on the maximum response amplitude as reported by Govardhan 
and Williamson [6] and Klamo, Leonard and Roshko [11]. These 
Reynolds number dependencies were characterised in more detail 
in the later work by Govardhan and Williamson [7]. The low 
Reynolds number study by Ryan, Thompson and Hourigan [15] 
also revealed a Reynolds number dependency of the critical mass 
ratio. This was supported by the study by Morse and Williamson 
[13] which showed an increase in critical mass ratio from 0.36 to 
0.54 over the Reynolds number range of 4 x 103 to 3 x 104 as 
illustrated in figure 1. 

 

Figure 1. Critical mass ratio dependence on Reynolds number [13] 

The investigation by Horowitz and Williamson [8] where the 
VIV motions of a rising and falling cylinder were examined 
yielded a critical mass ratio of 0.54. This arrangement, despite 
allowing the cylinder multiple degrees of freedom, produced 
results in close agreement with previous experiments. A system 
free to vibrate inline and transverse to the flow has the potential 
at low mass ratio to display a super-upper response branch (e.g. 
Pesce and Fujarra, [14] and Stappenbelt & Lalji, [16]) rather than 
the upper response branch observed in transverse only 
experiments. By extrapolation of their data, the two degree of 
freedom system experiments by Jauvtis and Williamson [9] 
revealed a critical mass ratio value of 0.522. 

Few published studies have examined the critical point for a 
pivoted cylinder. The studies by Leong and Wei [12] and 
Voorhees, Dong, Atsavapranee, Benaroya and Wei [22] attempt 
to apply the concept of the mass ratio to a rotational system. 
Insufficient information is provided in these papers to ascertain 
the mass moment of inertia of the cases covered. The former 
study presents only partial response curves for limited mass ratios 
and the latter only provides experimental results above the 
critical point. 

In the pivoted cylinder study by Flemming and Williamson [1] 
the mass moment of inertia ratio is surmised, using the approach 
by Khalak and Williamson [10], to be the governing parameter 
for the VIV critical point. Adopting the mass moment of inertia 
ratio as the governing parameter appears to be the logical choice 
as it is the rotational analogy of the mass ratio in a translational 
system. In the investigation by Flemming and Williamson [1], 
three mass moment of inertia ratio cases were covered, ranging 
from I*=7.69 to I*=1.03. These experiments, although all 
performed above the critical point, yielded effective added inertia 
coefficient (CEAI) data that allowed a prediction of a critical point 
value of I*crit ≈ 0.5. It must be noted however that the CEAI values 
obtained were not constant in the lower response branch (as was 
the case for CEA values for the translating cylinders), rather, they 
were continually decreasing until the de-coherence region.  

The force moment ratio, M*, is defined as the ratio of the moment 
about the point of rotation due to the weight force acting on the 
structural mass to that acting on the displaced fluid mass as 
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Note that equation 5 is equivalent to the magnitude of the ratio of 
moments due to the structural weight (i.e. W.rw.sin where rw is 
the distance of the centre of gravity (CoG) to the centre of 
rotation) and buoyancy (i.e. B.rB.sin where rB is the distance of 
the centre of buoyancy (CoB) to the centre of rotation) forces in 
the plane of transverse oscillations, 

i.e. M∗ ൌ ቚ
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The study by Stappenbelt and Johnstone [19] showed the 
existence of a critical point for a pivoted cylinder which was 
governed by the force moment ratio rather than the mass moment 
of inertia ratio. The aim of the present study is to examine the 
dynamics of a pivoted cylinder to determine the Reynolds 
number dependence of the critical point for rotational systems. 

Methodology 

The present investigation consists of an experiment in which a 
pivoted cylinder as illustrated in the sketch of figure 2 was towed 
along a 32.5m water tank. Inline vibrations were restrained and 
transverse vibrations were measured by the use of laser 
displacement transducers. Figure 2 also acts as a parameter 
definition sketch. The angular displacement relative to the initial 
position of the cylinder in the plane of transverse oscillation is 
designated . It is the angular position relative to the vertical. 



Table 1 details the parameter values for the experiment. The 
force moment ratio was experimentally controlled by the addition 
of lump masses inside the end of the cylinder. The experiment 
was conducted over a Reynolds number range from 5.3 x 103 to 
6.5 x 104. 

 

Figure 2 Experimental apparatus and parameter definition sketch.  

The approach adopted in the present study to determine the 
location of the critical point was to examine the nature of the 
vortex-induced vibrations at very high reduced velocity (i.e. as 
Ur). The amplitude of the response indicated either resonant 
(i.e. below the critical point) or forced vibration (i.e. above the 
critical point).  

Parameter Symbol Value 

Force moment ratio range M* 0.315-0.762 
Reynolds number range Re 5.3x103-6.5x104 
Cylinder length L 842 mm 
Pivoted length Lp 1256 mm 
Cylinder diameter D 48 mm 
Structural damping ratio  0.006 
Minimum reduced velocity Ur O(1000) 

Table 1 Experimental parameter values.  

The non-dimensionalised freestream flow velocity (i.e. the 
reduced velocity) is given by 

U୰ ൌ
୙
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The natural frequency, fn, is proportional to the square root of the 
angular restoring force coefficient, k. Considering the sum of the 
moments about the cylinder pivot point it may be shown that 

k஘ ൌ Wr୛ െ Br୆ ൅ 2kr୩.                       ሺ8ሻ 

To test for resonance as Ur, the restoring force coefficient, k, 
must tend to zero. From equation 8 it may be seen that this 
condition is approached as 

kr୩ → ሺWr୛ െ Br୆ሻ/2.                     ሺ9ሻ 

The spring rate and distance of the point of restoring force action 
from the pivot were utilised to ensure that the reduced velocity 
was always of the order of 1000. Some restoring capability was 
of course necessary to maintain the centralising tendency of the 
cylinder whilst undergoing flow induced vibration.  

Results  

Two time series samples are provided in figure 3. The angular 
displacements in these plots are normalised by the angle D equal 
to half the angle subtended in the arc defined by a chord and 
radius equal to the diameter and length from the cylinder tip to 
pivot point respectively. The time series obtained in this study 
typically displayed a low frequency drift from the equilibrium 
position due to the low restoring tendency of the system with 
k0.  

 

 

Figure 3. Time response above (a) M*=0.33 and below (b) 
M*=0.70 the critical point: Re=1.2 x 104. 

It is clear from figure 3 that a transition from low amplitude 
forced vibration response to high amplitude resonant response 
occurs indicating the critical point. Figure 3a is an example of the 
nature of the resonant vibrations below the critical point 
displaying large amplitude regular oscillations. This is in contrast 
with figure 3b which is an example of the forced vibration 
response of the pivoted cylinder above the critical point. 

Figure 4. Response amplitude as a function of the force moment 
ratio at Re=3.16 x 104.  

The angular response of the cylinder at various force moment 
ratios at a Reynolds number of 3.16 x 104 are presented in figure 
4. Each data point in these plots represents the averaged half peak 
to peak angular response of between 60 and 85s of steady-state 
data collected, representing between 52 and 58 oscillation 
periods. The angular displacement amplitude is normalised as 
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The transition from resonant to forced vibration appears to occur 
at M*=0.504 implying the occurrence of the critical point in this 
region. This process was repeated at 24 different Reynolds 
numbers ranging from 5.3 x 103 to 6.5 x 104. The cirtical points, 
identified through the forced to resonant amplitude transitions, at 
these Reynold numbers are plotted in figure 5. 

 

 

Figure 5. Pivoted-system critical-point variation with flow 
Reynolds number. 

Conclusions 

It is clear from figure 5 that there exists a Reynolds number 
dependence of the critical vortex-induced vibration point of a 
pivoted cylinder. The form of this dependence is analogous to 
that reported for translating cylinders (e.g. the work by Morse 
and Williamson [13] in figure 1).  

The asymptotic behaviour of the critical point at higher Reynolds 
number noted in the translating cylinder case is also observed in 
the present case. The critical force moment ratios for pivoted 
cylinders tend to 0.53 with increasing Reynolds number, 
corresponding reasonably well with the translating cylinder 
critical point values reported.  
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