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Abstract

The jet in cross-flow features complex fully three-dimensional

dynamics that cannot be fully investigated using the simplify-

ing assumptions commonly applied to simpler flows. The jet in

cross-flow has recently been explored by the KTH Group using

a spectral CFD code in conjunction with global stability anal-

ysis. The complex dynamics are now well understood, at least

for small values of the jet-to-cross-flow velocity ratio R. This

establishes the low-amplitude jet in cross-flow as a suitable test

case for investigating the accuracy, capabilities and limitations

of various CFD solvers. The KTH investigations use a simpli-

fied velocity profile with axial symmetry for the jet inflow. With

some care, results with much the same stability characteristics

have been obtained for this configuration using the ANSYS Flu-

ent CFD solver. Simulations have also been conducted in which

the jet fluid originates from a tube connected to the orifice. The

simplified jet inflow velocity profile used in the KTH configu-

ration is shown to be physically unrealistic. The sharp edge on

the rim of the orifice where the tube joins the wall represents a

singularity. Peak concentrations of vorticity magnitude near the

sharp edge can be as large as 15 times the wall vorticity of the

undisturbed boundary layer. For this more physically realistic

configuration the onset of instability occurs at smaller R.

Introduction

The jet in cross-flow refers to flow from a nozzle in a wall that

interacts with the surrounding boundary layer developing on the

wall. The jet in cross-flow has been subject to extensive exper-

imental, numerical and theoretical investigations because of its

practical relevance. Applications include plumes of smoke and

pollutants, fuel injection and mixing or film cooling. Exper-

imental studies include (6), (8), (12) and (4). Numerical and

theoretical investigations include (2), (3), (14), (10), and (15)

These represent only some of the main contributions. Mahesh

(9) provides a recent review.

The parameters controlling the characteristics of the jet in cross-

flow include the Reynolds numbers of the jet inflow and the

cross-flow boundary layer, the shape and size of the inlet pipe

for the nozzle, and the velocity ratio R, which is the most impor-

tant parameter. A number of definitions of R have been used, in-

cluding configurations in compressible flow which account for

the fluid density of the jet and cross-flow. In this paper R is

defined in the same way as (1) and (7), i.e.

R =
V

U1
(1)

where V is the maximum in inflow velocity profile of the jet and

U1 is the free-stream velocity of the cross-flow boundary layer.

DNS (Direct Numerical Simulations) of the low amplitude jet

in cross-flow have recently been investigated by the group at

the Dept. of Mechanics, Roy. Inst. Tech. in Sweden,(KTH). (1)

used the fully spectral, massively parallel spectral DNS solver

called SIMSON. For small values of R the flow is steady and

consists of a counter-rotating vortex pair. As R is increased the

onset of shedding of horseshoe vortices occurs at a particular

value of R. With further increases in R the flow evolves into a

more complicated quasi-periodic behaviour, before finally be-

coming turbulent. In a follow on study (7) performed a global

linear stability analysis that predicts well the frequency and ini-

tial growth rate of the nonlinear DNS at the critical value of R

for the onset of shedding.

The overall agreement between nonlinear DNS and the predic-

tions from global linear stability analysis establishes the low-

amplitude jet in cross-flow as a significant test case for investi-

gating the capabilities and limitations of various CFD solvers.

The configuration studied (1) and (7) will be termed the KTH

configuration. In this paper, the behaviour of the KTH configu-

ration will be simulated using the ANSYS Fluent CFD solver.

The conditions for the onset of instability, decay of transients

and other characteristics in the Fluent solutions will be com-

pared to the KTH results.

CFD Configuration

In the KTH configuration the jet inflow velocity profile is in-

troduced on the wall as a Dirichlet boundary condition in a

spatially developing Blasius boundary layer using the follow-

ing simplified parabolic jet inflow profile which is multiplied

by a super-Gaussian smoothing function:

v(r)/U1 = R(1− r2)exp[−(r/0.7)4] (2)

where r is the distance from the centre of the jet, normalized by

half the jet diameter, D. The profile is shown in figures 1(a-b).

In the KTH configuration the nozzle diameter, D = 3 and the

Reynolds number based on the displacement thickness of the

incoming boundary layer Reδ∗0
= 165. The jet nozzle centre is

located at x = 9.375δ∗0 downstream of the inflow location, with

boundary layer displacement thickness, δ∗ = 1.08, correspond-

ing to Reδ∗ ≈ 178.2.

Corresponding results are presented here using ANSYS Flu-

ent with a CFD mesh developed for a synthetic jet applica-

tion by (13). The orifice diameter, D = 1.0 mm for the syn-

thetic jet mesh leading to a corresponding unit Reynolds num-

ber, Reu = 495,000 m−1. For the default Fluent kinematic vis-

cosity for air of ν = 1.4607×10−5m2s−1 the Reynolds number

scaling leads to a free-stream velocity, U1 = 7.230 ms−1, and

the physical location of the inlet, xi = 0.0185 m and the jet,

x j = 0.02166 m. In a physical configuration the orifice would

be located close the leading edge where the cross-flow boundary

layer grows relatively rapidly.

The CFD mesh developed by (13) for the synthetic jet uses the

flow from an entry tube attached to the orifice to form the jet.

For the KTH configuration, the tube is removed and the orifice

inflow boundary condition is specified using equation (2). The

two-dimensional axisymmetric inlet velocity profile for the jet

for R = 0.65 is shown in figures 1(a-b) for two different mesh

resolutions.



Figure 1: View from z-direction of two-dimensional profiles

of the orifice jet velocity for R = 0.65: KTH configuration,

(a) Coarse mesh; (b) Fine mesh; Configuration with tube, (c)

Coarse mesh; (d) Fine mesh.

More physically realistic simulations are also conducted in

which the length of the entry tube for the jet of length, L = 20

mm, i.e. L/D = 20. Sharp edges can introduce significant errors

in viscous flow simulations. Exact solutions can be singular at

sharp edges and numerical solutions can diverge in the singular

region. The sharp-edge on the rim of the orifice where the tube

joins the wall represents a singularity where the local solutions

of vorticity become increasingly large as the mesh is further

refined. Preliminary investigations showed that local concen-

trations of vorticity magnitude are far in excess of the vorticity

in the surrounding boundary layer. This is an important con-

sideration since the resolution of the flow in the vicinity of the

orifice must be sufficient to obtain an accurate representation of

the magnitude of the shear in the emerging jet, which will effect

the stability of the flow downstream.

CFD Mesh

The CFD mesh consists of a base mesh which has been lo-

cally subjected to adaption, twice, in the region surrounding

the jet orifice and extending downstream to the Outflow. Each

adaption doubles the mesh resolution in each direction, leav-

ing hanging nodes on the adaption boundary. Hence the finer

mesh surrounding and downstream of the jet orifice is 64 times

more dense per unit volume than the surrounding base mesh,

i.e. (23)3. The motivation is that the resolution of the base mesh

need only be sufficient to properly resolve development of the

Blasius boundary layer while the much better resolution of the

double-adapted mesh will be sufficient to resolve any fine-scale

vortical structures downstream of the orifice. Double-adapted

mesh are visible on the Wall and Outflow in figure 2.

Figure 2: (a) CFD geometry: Rectangular hexahedron and 1

mm diameter tube. Coarse Mesh with close-up: 6.55M nodes.

(b) Corresponding close-up of refined Fine Mesh: 34.15M

nodes.

Two structured CFD meshes have been used. The geometry

used for both meshes and features of the Coarse Mesh are shown

in figure 2(a). The relative size and shape of the regions used

for double adaption of the Coarse Mesh are much the same as

for the synthetic jet study. Corresponding features of the Fine

Mesh are shown in figure 2(b). A refined version of the double-

adapted region has also been used for the Fine Mesh, with less

extent from the wall. The refinement was was guided by the

formation of vortex loops in other versions of the mesh. For all

mesh the boundary of double-adapted regions occurs well away

from the region containing vortex loops.

The mesh spacing in the x− and z−directions become uniform

by about five diameters downstream of the center of the ori-

fice and the mesh resolutions in the double-adapted regions are

shown in table 1. The subscript ’v’ refers to use of the vis-

cous length-scale
√

(νx)/U1 for non-dimensional quantities.

The ‘+’ superscript refers to the usual turbulent viscous scal-

ing, where ν/uτ is used for non-dimensional quantities, where

uτ =
√

τ0/ρ and τ0 is the shear stress at the wall. The Blasius

boundary layer value of τ0 at a location 5d downstream of the

orifice is used to calculate uτ for non-dimensional quantities.

The Blasius skin friction coefficient 5D downstream of the ori-

fice is given by C f = 6.0×10−3, which is larger than the maxi-

mum C f in a turbulent boundary layer and therefore it provides

a conservative scaling. The corresponding value of the mini-

mum grid spacing in the wall-normal direction is y+min = 0.33

for the Coarse Mesh, and y+min = 0.14 for the Fine Mesh. The

resolution of the Fine Mesh is less than half the resolution used

in the recent transition simulations reported by (11) in which

∆x+ = 10, ∆z+ = 5 and y+min = 0.4.

Mesh spacing

Mesh ∆x ∆z ∆xv ∆zv ∆x+ ∆z+

( µm) ( µm)
Coarse 106 91 0.47 0.41 2.88 2.47

Fine 43 37 0.19 0.17 1.17 1.00

Table 1: Resolution of uniform mesh in the double–adapted re-

gions more than 5d downstream of the center of the orifice.

Both meshes use a fine resolution in the tube near the orifice.

For the Coarse Mesh: δy ≈ 6.0 µm ≈ 1/166 d; and for the Fine

Mesh: δy ≈ 4.5 µm ≈ 1/222 d. The resolution is evident in the

steep gradient in the velocity profiles shown in figure 1(c-d).

Figure 3: Sharp-edge singularity. Vorticity magnitude contours

in vicinity of orifice nonondimensionalized by velocity gradient

at wall of undisturbed boundary layer at x = x j, and superim-

posed on tube and wall mesh. Fine Mesh with R = 0.65.

Boundary Conditions

The inflow boundary condition [Velocity Inlet in figure 2(a)] is

specified by writing a profile consisting of the u and v veloc-

ity components. The velocities are replaced with correspond-

ing Blasius values which are calculated independently using the

profile coordinates. The updated Blasius profile for u and v is

reloaded by the solver and spanwise velocity set to zero, w = 0.

The ceiling is parallel to the wall and it is set as a velocity inlet

with u=U1, normal component set to the asymptotic transverse



Figure 4: Steady flow, Fine Mesh with tube, R = 0.65. (a)

Line contours of ΩN = |Ω|/(∂u/∂yOrifice) in spanwise planes,

∆x = 3,6 . . .21D from centre of orifice. (b) Line contours,

ΩN(0 → 1.5), Ωz(±1.5), Ωx(±0.3) and QN(±0.02) (c) Iso-

surface, ΩN = 1.0: shading (blue) −0.1 < u/U1 < 1 (red).

Blasius velocity, v = 0.8604
√

νU1/x, and w = 0. The two side

walls are set as periodic boundary conditions.

For the KTH configuration, the tube is removed and the ori-

fice inflow is set as a velocity inlet with the boundary condi-

tion specified by equation (2). The axisymmetric inlet velocity

profile for the jet for R = 0.65 is shown in figures 1(a-b) for

the two different mesh resolutions. For the more realistic con-

figuration, a uniform flow is applied to the inlet of the tube.

Fully developed Poiseuille flow (with a parabolic velocity pro-

file) was found to form after a development length, L/D ≈ 10

for the largest tube Re. The development length is consistent

with the findings of (5). The peak velocity of the parabolic pro-

file for fully-developed Poiseuille flow, Vmax is used to define

R in equation (2), i.e. R = Vmax/U1, where Vmax is twice the

magnitude of the uniform inlet flow. Setting the magnitude of

the uniform inflow for the tube provides a convenient method

for setting R for this configuration since the jet profile is signif-

icantly altered at the orifice. The resulting two-dimensional jet

inlet velocity is not axisymmetric, but the peak value is close to

the peak value of the symmetric profile used in the KTH config-

uration, as shown in figure 1(c-d) for two different mesh reso-

lutions for R = 0.65.

CFD Method

Unsteady time series are generated from the corresponding

steady solution for each R. The steady solutions use the

pressure-based, coupled solver with second-order upwind dif-

ferencing for pressure and third-order MUSCL discretization

scheme for momentum. The steady solutions typically required

more than 20,000 iterations for global continuity residual con-

vergence to 1×10−8.

For the unsteady time series the steady solution is loaded

and the general model changed to a pressure-based transient

solver. Non-Iterative Time Advancement (NITA) was found

to be significantly faster than iterative schemes. Second-order

fractional-step is used for the pressure-velocity coupling, with

second-order for the pressure.

Numerical noise provides the background disturbance for excit-

ing the instabilities It is important to minimize the numerical

dissipation and to avoid damping of the smallest scales. Central

Differencing was used since it is the least dissipative and pro-

vides the highest resolution accuracy for smallest scales. Reso-

lution is checked by comparing results using the different mesh.

Results

Contours of vorticity magnitude for the Fine Mesh with R =
0.65 are shown figure 3. As mentioned earlier, the sharp-edge

Figure 5: Steady flow, R = 0.65. Iso-surfaces of QN = 0.002:

second invariant of the velocity gradient tensor Q nondimen-

sionalized by (∂u/∂yOrifice)
2, shading (blue) −0.1 < u/U1 < 1

(red). Configuration with tube: (a) Fine Mesh (b) Coarse Mesh.

KTH configuration: (c) Fine Mesh (d) Coarse Mesh.

Figure 6: Time histories for KTH configuration, R= 0.65, using

probe shown in figure 7. (a) Coarse Mesh. Central differencing

(blue), Upwind differencing (black). (b) Central differencing.

Coarse Mesh (blue), Fine Mesh (black).

on the rim of the orifice where the tube joins the wall represents

a singularity where the local solutions of vorticity becomes in-

creasingly large as the mesh is further refined. Most of the wall

vorticity of the layer is accounted for by ∂u/∂yOrifice . The peak

vorticity near the rim of the orifice occurs off-centerline and it

is approximately 15 times greater than the vorticity in the sur-

rounding boundary layer. Proper resolution of the local concen-

tration of vorticity is an important consideration since the flow

in the vicinity of the rim will form the shear in the emerging jet.

The shear on the jet boundary will effect the stability charac-

teristics of the counter-rotating vortex pair and the onset of the

formation of horseshoe vortices downstream.

Figure 4(a) shows the development of vorticity ΩN in cross-

stream planes downstream of the orifice for the configuration

with the tube for R = 0.65. The main features are the counter-

rotating vortex pair, which consist mainly of streamwise vor-

ticity, ωx, and the head of the loop, which consists mainly of

spanwise vorticity, ωz, as shown in the larger-scale views of

Ωx = ωx/(∂u/∂yOrifice) and Ωz = ωz/(∂u/∂yOrifice) in figure

4(b). The vorticity development is also apparent in the iso-

surface ΩN = 1.0 in figure 4(c) which is shaded using the local

streamwise velocity.

The second invariant of the velocity gradient tensor, Q, is often

used to identify Λ-vortices in transitional and turbulent bound-

ary layers, e.g. Sayadi et al. (11). Line contours of QN (defined

in figure 5 caption) show a marked similarity with contours of

Ωx. Bagheri et al. (1) and Ilak et al. (7) used this technique to

identify vortex loops in the KTH simulations.

Horseshoe vortices for R = 0.65, are clearly seen in the results

for the KTH configuration in figure 7. Corresponding results

for the case with the tube are shown in figure 8. Here the horse-

shoe vortices are larger and more energetic. Horseshoe vortices

for R = 0.60 for the case with the tube are shown in figure 9.

The horseshoes do not form for this R in the KTH configuration



Figure 7: Horseshoe vortices, KTH config., R = 0.65, original

Fine Mesh. Iso-surface, QN = 0.01, shading: (blue) −0.1 <
u/U1 < 1.1 (red). Probe location shown for time histories.

Figure 8: Horseshoe vortices, with tube, R = 0.65, Coarse

Mesh. Iso-surface, QN = 0.01, shading as in figure 7.

(without the tube). The time histories in figure 10 show a much

reduced magnitude v fluctuation. The cause of the substantial

modulation in v seen by the probe originates from an overall

modulation in the formation of the horseshoe vortices. The rea-

son for the modulation in horseshoe formation is unknown at

this stage.

Conclusions

Results with much the same stability characteristics have been

obtained using the ANSYS Fluent CFD solver corresponding to

the KTH configuration. Simulations in which the jet fluid orig-

inates from a tube connected to wall show peak concentrations

of vorticity near the sharp edge of the orifice which can be as

large as 15 times the wall vorticity of the undisturbed boundary

layer. For this more physically realistic configuration the onset

of instability occurs at smaller value, R = 0.60.
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