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Abstract

A vortex decay model for predicting temporal evolution of peak
vorticity in a wake behind a cylinder is presented. Where the
wake vortices are in stable region, results have shown that the
correlation has a good capability of predicting temporal evolu-
tion of peak vorticity within an advecting vortex across a wide
range of flow parameters. The correlation is also generalized to
predict the dacay behaviour of wake vortices in a class of mag-
netohydrodynamic duct flows. Comparison with published data
demonstrates the capability of this model in predicting vortex
strength with a relative standard error of less than 2%.

Introduction

The vortex street generated from a two-dimensional (2-D) bluff
body has always been a subject of interest due to its academic
and practical importance in engineering [11]. 2-D vortex streets
have further been shown to contribute significantly to improving
transverse convective heat transport in magnetohydrodynamic
(MHD) duct flow, and thus the improved understanding of the
transport and decay of vortices in these flows is crucial for the
design of efficient heat transport systems in high-magnetic-field
applications [4]. When the fluid is electrically conducting and
subjected to a strong magnetic field, the decay of wake vortices
perpendicular to the field is accelerated via Joule dissipation
(due to the Lorentz forces induced by magnetic field) and will
experience exponential decay [12]. This fact was confirmed by
the experimental investigation by [3], where they measured the
vorticity of a cylinder wake at four different streamwise loca-
tions. Their results revealed that the vortex intensity decayed
much faster at Hartmann number Ha = 1200 than at Ha = 500
as the vortices advected dowstream. They concluded that the
vortex energy dissipates by Hartmann braking rather than via a
cascade down towards smaller structures, which is a prominent
feature of MHD flow as compared to pure hydrodynamic flow.
When the Hartmann number is increased above a critical value,
the shedding is completely inhibited [5].

The decay rate of vorticity is also influenced by the conductiv-
ity of the Hartmann walls. For perfectly insulating walls, the
characteristic decay time of vorticity is dependent on Hartmann
braking with scale proportional to Re/Ha [2]. A numerical in-
vestigation by [5] found that for high Reynolds and Hartmann
numbers, the viscous diffusion term can be neglected. Thus the
decay of peak vorticity magnitude of an individual wake vortex
is described by the Hartmann friction term only, i.e. Re/Ha as
suggested by previous theory.

In summary, considerable research has been done on the behav-
ior of wake vortices, with and without a magnetic field. How-
ever, little is known about the decaying core vorticity behavior.
In the current work, the decay of wake vortices under various
flow parameters are quantitatively analyzed. The aim is to de-
vise a correlation describing the decay behaviour of cylinder
wake peak vorticity under the influence of a strong magnetic
field.

Analytical Solution for a Line Vortex Decay

From [5], the quasi-two-dimensional vorticity transport equa-
tion for an incompressible flow of an electrically conducting
fluid between two plates subjected to a uniform strong mag-
netic field in the out-of-plane direction is given in dimensiona-
less form as:

Dξ
Dt

= ∇2ξ−2Ha ξ, (1)

where ξ is vorticity, t is time, D/Dt the material derivative, ∇
the gradient operator, the Hartmann number Ha = Ba

√
σ/ρν,

where B, a, σ, ρ and ν are the applied magnetic field, out-of-
plane duct height, magnetic permeability, density and kinematic
viscosity of the liquid metal, respectively. The length, time and
vorticity are scaled by gap height, a, a2/ν and ν/a2 respec-
tively. In cylindrical coordinates, this is rewritten as

Dξ
Dt

=
∂2ξ
∂r2 +

1
r

∂ξ
∂r

−2Ha ξ, (2)

where r is the radial coordinate.

Equation (2) can be transformed using ξ(r, t) = e(−2Ha t)ξ1(r, t)
to give ∂ξ1/∂t = ∂2ξ1/∂r2 +(1/r)∂ξ1/∂r [7]. The solution to
this equation is exactly the Lamb–Oseen vortex solution, where
the vorticity field is given by ξ = Γ/πrc

2e(−r2/rc
2). Here Γ

represents the initial amount of circulation contained in an in-
finitesimal filament. The time variation of the core radius is
described by rc =

√
4ντ, where τ = t + t0 is the time since the

vorticity field is initially concentrated at the origin. It is instruc-
tive to also introduce the peak vorticity in this profile, which
appears at r = 0, ξp = Γ/(πrc

2). Using the present scaling, the
core radius expression non-dimensionalizes to rc =

√
4τ and the

peak vorticity to ξp = Γ/(4πτ). The vortex core radius at an ar-
bitrary time t0 is defined as r0 =

√
4t0. The analytical solution

for a Lamb–Oseen peak vorticity is then given by

ξ1,p =
Γ
π

(
1

4t + r02

)
. (3)

Correspondingly the solution for a line vortex decaying in a
quasi-2D flow can be expressed as

ξp =
Γ
π

(
1

4t + r02

)
e−2Ha t . (4)

Numerical Method and Validation

The system of interest is a circular cylinder confined by a rect-
angular duct (refer figure 1). The axis of the cylinder is parallel
to the spanwise direction and perpendicular to the flow direc-
tion. Here lengths are normalized using the half channel width,
L. A homogeneous magnetic field with a strength B is imposed
parallel to the cylinder axis. A quasi-two-dimensional model
proposed by [13] (later known as SM82) has been employed in
the current work. This model is derived by averaging the flow
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Figure 1. Schematic diagram of numerical domain. The shaded
area indicates cylinder of infinite extension along the z-axis with
diameter d.

quantities along the magnetic field direction and has been ver-
ified against 3D results [9, 10]. It has been applied in many
previous works, for example by [5] and [4] due to its accuracy
despite its simplicity. Under this model the non-dimensional
magnetohydrodynamic equations of continuity and momentum
reduce to

∇ ·u⊥ = 0, (5)

∂tu⊥ =−(u⊥ ·∇)u⊥−∇p+
1

Re
∇2u⊥− H

Re
u⊥, (6)

where u⊥ and p are the velocity and pressure fields, respec-
tively, in axial direction. The parameter H = 2(L/a)2Ha is a
measure of the friction term. All boundaries are assumed to be
electrically insulated to ensure the validity of model being used.
An advanced, high-order, in-house solver based on a spectral-
element method for spatial discretization is employed to simu-
late the cases.

The numerical system has been validated for the wake of a cir-
cular cylinder for cases with and without a magnetic field. Fur-
ther, a decaying line vortex based on the Lamb–Oseen solu-
tion has been simulated and compared with the analytical solu-
tion. Simulations were carried out at various different Hartmann
number, circulation and initial core radius. Excellent agreement
is seen between the numerical and analytical results. Further
validation of the code can be found in [5, 4].

A grid independence study for spatial resolution has been
performed by varying the element polynomial degree from 5 to
10, while keeping the macro element distribution unchanged.
Meshes near the walls and the cylinder were refined to resolve
the typical high gradients, especially with the flows involving
strong magnetic fields. The pressure and viscous components
of the time-averaged drag coefficient (CD,p,CD,visc) and the
Strouhal frequency of vortex shedding (St) were monitored,
as they are known to be sensitive to the domain size and
resolution. Errors relative to the case with highest resolution,
εP = |1−PNi/PN=10|, was defined as a monitor for each case,
where P is the monitored parameter. A demanding MHD case
with Re = 8000 and Ha = 3750 was chosen for the test. The
results are presented in table 1, and show good convergence
when the polynomial order increases. A mesh with polynomial
degree 7 achieves at most a 0.1% error and is therefore used
hereafter.

Np 5 6 7 8 9
εCD,p 0.0010 0.0002 0.0002 0.0002 0.0003

εCD,visc 0.0024 0.0023 0.0010 0.0001 0.0000
εSt 0.0034 0.0003 0.0002 0.0001 0.0000

Table 1: Grid independence study at ReL = 8000 and Ha = 3750
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Figure 2. Curve fitting for constant a. In the curve-fit equation,
y is a/(Re′d)

1.44 and x is the blockage ratio, β.

Development of Correlation

It is observed from previous studies that increasing Hartmann
number generally acts to increase the rate of vortex decay [5].
To quantify these observations, the peak vortex strength of
wake vortices behind a cylinder has been recorded at a differ-
ent blockage ratios and a broad range of Hartmann numbers and
Reynolds numbers. These parameters are correlated by means
of regression analysis. As a prelude to the current analysis, the
influence of magnetic field on the decay of a single isolated vor-
tex was considered as a basis for the functional form of the cor-
relation, i.e. ξ1,p = a/(4t + b) and ξp = ae−cHa t/(4t + b) for
pure hydrodynamic and magnetohydrodynamic cases, respec-
tively. To obtain the values of constants a, b, and c, the time
history of the peak vorticity within a single wake vortex as it
advects downstream of a body is extracted from the simulations
at blockage ratio between 0.1 and 0.4, Hartmann numbers be-
tween 250 and 2000, and Reynolds numbers based on channel
half-height between 300 and 6000. The values of a and b were
determined by curve-fitting the temporal decay of peak vortex
strength for each hydrodynamic case (Ha = 0) into the afore-
mentioned fitting function.

Inspection of the data for a range of parameters revealed
that a is dependent on modified cylinder Reynolds number,
Re′d = 2βReL/(1− β) and blockage ratio, and b is dependent
on channel Reynolds number, ReL, blockage ratio and initial
peak vortex strength, ξp,0. By plotting a/(Re′d)

n against β
and bξp,0/β against ReL, the data collapse onto a curve de-
scribed by exponential and power-law relations, respectively.
figure 2 shows a typical plot, and regression analysis yields
a = 0.13e−3.47β(Re′d)

1.44 and b = 0.092βReL
1.46/ξp,0. Substi-

tution into the fitting fucnction yields

ξp =
0.13e−3.74βξp,0(Re′d)

1.44

4ξp,0t +0.092β(ReL)1.46 e−cHat . (7)

Using the same approach as in the development of expressions
for a and b for pure hydrodynamic flow, constant c was obtained
from the peak vorticity time history of magnetohydrodynamic
cases. It was then plotted against ReL and the expression for c
was obtained as c = 2.32ReL

−1.02. Substitution into equation
(7) gives

ξp =
0.13e−3.74βξp,0(Re′d)

1.44

4ξp,0t +0.092β(ReL)1.46 e

(
−2.32 Ha

Re1.02
L

t
)
. (8)

This equation provides numerous insight into the temporal
evolution of the wake vortices. First, the vortex decay in
MHD is described by the power-law and exponential relation-
ship. Equation (8) is re-written as ξp = ξp,visc × ξp,H , where



ξp,visc = 0.13e−3.74βξp,0(Re′d)
1.44/(4ξp,0t + 0.092β(ReL)

1.46)

and ξp,H = e(−2.32Ha t/Re1.02
L ) in order to emphasize the propor-

tion of each damping force. ξp,visc and ξp,H correspond to vis-
cous dissipation and magnetic damping, respectively. It is in-
teresting to note that the rate of decay declines with time in
a power function but remain constant in exponential function.
This suggest that if the decay of the wake vortices is first domi-
nated by the viscous dissipation, it will eventually be dominated
by the magnetic damping. The threshold for this transition is
when the decay rate for both damping force equalizes. How-
ever, at higher Hartmann number the magnetic damping effect
already prevails from the beginning of the decay process. To
illustrate this, figure 3 shows the effect of varying Hartmann
number on the ratio of both damping contributions. It can be
seen that in the absence of magnetic field, the curve of viscous-
to-magnetic damping ratio decrease asymptotically to the x-axis
(a typical power-law curve behaviour). However, in the pres-
ence of magnetic field, the curve turns to a positive gradient
at a certain threshold (indicates by zero gradient). The turn-
ing point marks the beginning of the magnetic damping domi-
nated region. For a given Reynolds number, the turning point
shifted towards the y-axis as the Hartmann number increased,
indicating shorter viscous dissipation dominated region. In the
limiting case of high Hartmann number, the magnetic damp-
ing is already become the dominant forcing at the onset of vor-
tex shedding (dashed curve). It is also important to note that
this behaviour is a Reynolds number dependent, where higher
Reynolds number tends to prolong the viscous dissipation dom-
inated region.

Furthermore, the decay rate of peak vorticity depends on the ini-
tial peak vortex strength, which is consistent with Ponta’s obser-
vation [8]. The decay rate is defined as the derivative of natural
logarithm of peak vorticity in equation (8) with respect to time
[5], i.e.

∂(loge ξp)

∂t
=−2.32

Ha
Re1.02

L
−

4ξp,0

4ξp,0t +0.092β(ReL)1.46 . (9)

As the time approaches infinity, the gradient of the decay rate
curve reaches an asymptote at −2.32Ha/Re1.02

L , an expression
which closely resembles the Hartmann friction term in the gov-
erning equation (i.e. −2Ha/ReL). This implies that the decay
rate of peak vorticity approaches the Hartmann friction term at
arbitrarily large time, which corroborates the aforementioned
discussion.

Equation (8) also predicts peak vorticity time history for hydro-
dynamic flows by substituting H = 0, which yields

ξp =
0.13e−3.74βξp,0(Re′d)

1.44

4ξp,0t +0.092β(ReL)1.46 . (10)

Further, when unbounded flow is considered, i.e. β = 0, equa-
tion (10) recovers the inverse proportionality to time expected
from the Lamb–Oseen vortex solution, i.e.

ξp =
0.13(Re

′

d)
1.44

4t
. (11)

Comparing equation (11) with the peak vorticity of the Lamb–
Oseen vortex solution, i.e. ξp = Γ/(4πτ) yields

Γ = 0.13πRed
0.44. (12)

This equation shows that circulation is a function of Reynolds
number. Substituting Red = 75 results in Γ = 2.7, which is very
close to values obtained from previous experimental data by [6]
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Figure 3. Time history of viscous-to-magnetic damping ratio
for ReL = 500. Negative slope indicates region dominated by
viscous dissipation and positive slope indicates region domi-
nated by magnetic damping. Zero gradient indicates threshold
of MHD dominated region. The dash-dotted line connects the
turning point of each curve, separating two dominating regions
and crosses y-axis at ξp(0). The data is normalized by the initial
peak vorticity.
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Figure 4. Decaying peak vorticity from numerical results and
prediction by equation (8) for Ha = 250 and ReL = 1500. R2

represents the quality of the curve fit.

(Γ = 2.81 for Red = 75). The small discrepancy may be due to
the error in measuring velocity vectors in the experiment [6].

Correlation Validation

The validity of the devised correlations was examined using the
current numerical data set. An overall correlation coefficient
exceeding 90% was achieved, with more than 80% of the data
set exceeding 95%. figure 4 represents a typical comparison
between numerical results and prediction, and shows that the
temporal evolution of peak vorticity at different blockage ratios
are well predicted.

It should be emphasized that equation (8) should predict the
peak vorticity well when the wake is stable, i.e. when the lon-
gitudinal spacing between two successive vortices, l is con-
stant [1]. The spacing was determined by plotting the phase-
downstream distance relationships along the wake, in which the
typical plot can be found in [1]. The slope of the curve at any
position will give the reciprocal of the longitudinal spacing of
the vortices at that position. The plot shows that the longitudi-
nal spacing became constant within two or three cylinder diam-
eters downstream. Preceding the stable region is the formation
region, where the vorticity dissipates and organises into a coher-
ent structure in the vicinity of the cylinder [6]. This process can
be further divided into three stages, namely the accumulation
of vorticity from the separated boundary layers, the stretching
of vorticity, and the seperation of this vorticity from the bound-
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Figure 5. Overall comparison between numerical and predicted
peak vorticity.
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Figure 6. Comparison of predicted peak vorticity spatial evolu-
tion with the previous experimental data for Red = 75.

ary layer. This region consist of complex vortex geometries
and behaviour and hence are not considered in the development
of equation (8). This explains the scatter of data towards the
stronger vorticity region seen in figure 5. As the wake moves
further downstream, the wake stabilizes and hence equation (8)
becomes more capable of predicting the peak vorticity, which
produces the high collapse of data to a straight line of unit gra-
dient as data approaches the origin. The accuracy of the devised
correlation was further assessed by comparing the experimen-
tal and numerical results from [6] along with the predictions
from equation (10), and is plotted in figure 6. The predictions
compare very well with the numerical results, however devia-
tion further downstream is seen in the experimental results. [6]
attributes this discrepancy to the lower spatial resolution and
noise in the experimental measurements.

Conclusion

The analytical solution for the decay of a line vortex in a quasi-
two-dimensional MHD flow (analogous to the Lamb-Oseen so-
lution for non-MHD flows) is obtained, and this forms the basis
for a regression fit to describe the decay of wake vortices be-
hind an idealized turbulence promoter (i.e. a circular cylinder)
in a rectangular duct. The results show that at certain critical
Hartmann numbers, magnetic damping becomes the dominant
forcing for the decay of peak vortices. The correlation pro-
poses that the decay rate varies with time, blockage ratio, im-
posed magnetic field intensity and Reynolds number. Asymp-
totically, the decay rate approaches approximately −2Ha/Re at
large times. It is also noted that although the Hartmann numbers
studied are relatively small compared to fusion-relevant condi-
tions, the magnetic field is already observed to significantly af-
fect the wake vortices. Comparison with experimental and nu-
merical data validates the capability of the devised correlation
in predicting the decaying peak vortex intensity.
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