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Abstract

The immersed boundary (IB) method is a novel strategy to treat
the boundary condition of a solid immersed in a fluid. In the
original IB method, the forces exerted by the solid on the fluid
are spread to grid points in the vicinity of the solid boundary
in order to account for the effect of the solid. Then the Navier-
Stokes equations with additional body forces are solved on a
Cartesian mesh. This treatment can get reasonable velocitydis-
tribution near the fluid-solid interface. The primary advantage
of the IB method is that the grid generation is greatly simplified
and the mesh movement/regeneration is avoided.

Since the initial idea of the IB method, many additional features
have been developed to enhance the capability and to improve
the performance of the method. In this paper, we will intro-
duce our recent developments for the IB solvers: the IB method
based on the lattice Boltzmann method, the sharp-interfaceIB
method based on the finite difference method, and extensions
to other physical equations. A variety of applications of the IB
solvers will be demonstrated. The applications include insect
flight, fish swimming, red blood cells, fluid-structure interac-
tion during phonation, heat transfer and electrodynamics.

Introduction

Numerical methods based on fixed grids have attracted growing
interest in recent years due to their advantages in handlingcom-
plex/moving boundaries. The immersed boundary (IB) method,
which is the most notable among them, has gained popularity
for a wide range of applications in recent years. The IB method,
first developed by Peskin [8], is a novel strategy to treat the
boundary condition of a solid immersed in a fluid. In the orig-
inal version of the IB method, a continuous force is distributed
as a body-force term onto the volumetric mesh in the vicinityof
the boundary in order to account for the effect of the boundary.
The Navier-Stokes equations with additional body forces are
then discretized on a fixed Cartesian grid. Later, several families
of the IB method have been developed, examples are the direct
forcing approach based on local flow reconstruction in [7,21,24]
and the projection approach by Taira & Colonius [12]. The un-
derlying ideas of these works are very different depending on
the specific implementations. Nevertheless, all of these version-
s of the method are able to treat the irregular and time-varying
boundaries using a fixed, single-block Cartesian grid. There-
fore, they share the merits of simple grid generation, efficient
computation on the structured grid, and easy partition based on
domain decomposition.

Given its advantages, the IB method is particularly suitable
for simulation of the flows involving complex geometries and
large-deformation boundaries, for example the biologicaland
biomedical fluid–structure interaction (FSI) problems at the tis-
sue and organ levels [15]. In this paper, we will introduce our
recent progresses in developing the IB method and its applica-
tions in insect flight, fish swimming, red blood cells, FSI during
phonation, heat transfer and electrodynamics.

Immersed boundary–lattice Boltzmann method

In this method, the fluid flow is solved by the lattice Boltzmann
(LB) method. In the present LB method, the kinematics of the
fluid is governed by the discrete LB equation of a single relax-
ation time [2,17],
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wheregi(x, t) is the distribution function for particles with ve-
locity ei at positionx and timet, ∆t is the size of the time step,
geq

i (x, t) is the equilibrium distribution function,τ represents the
nondimensional relaxation time, andGi is the term representing
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whereωi are the weighing factors,u is the velocity of the fluid,
cs is the speed of sound defined bycs = ∆x/

√
3∆t, andf is the

body force acting on the fluid. The relaxation timeτ is related
to the kinematic viscosityν in the Navier–Stokes equations:

ν = (τ−0.5)c2
s ∆t. (4)

In the 2D nine-speed (D2Q9) model [11], as shown in fig-
ure 1(a), the nine particle velocities are given by
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where∆x is the lattice spacing. The weight factors are given
by ω0 = 4/9, ωi = 1/9 for i = 1 to 4 andωi = 1/36 for i = 5
to 8. In the 3D nineteen-speed (D3Q19) model [11] shown in
figure 1(b), the particle velocities are defined by

e0 = (0,0,0),

ei = [(±1,0,0) ,(0,±1,0) ,(0,0,±1)]
∆x
∆t

, i = 1-6,

ei = [(±1,±1,0) ,(±1,0,±1) ,(0,±1,±1)]
∆x
∆t

, i = 7-18.

The weight factors of D3Q19 model take the valuesω0 = 1/3,
ωi = 1/18 for i = 1 to 6 andωi = 1/36 for i = 7 to 18. The
values ofei ensure that within one time step, a fluid particle
moves to one of the neighboring nodes as shown in figure 1, or
stays at its current location.

Once the particle density distribution is known, the fluid density,
velocity and pressure are then computed from

ρ =∑
i

gi, u =
∑i eigi +

1
2f∆t

ρ
, p = ρc2

s . (5)
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Figure 1: Lattice Boltzmann models: (a) Nine base vectors
representing 9 possible velocity directions in the D2Q9 lattice
model; (b) Nineteen base vectors representing 19 possible ve-
locity directions in the D3Q19 lattice model.

The energy of the plate can be divided into elastic energy dueto
deformation,Ep, and the kinetic energy,Ek, which are defined
as,

Ep =
1
2
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∑
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wheremp is the density of the plate,nd is the dimension of the

plate,Ti j =
(

∂X/∂si ·∂X/∂s j
)1/2 is the stretching and shearing

effects,Bi j =
(

∂2X/∂si∂s j ·∂2X/∂si∂s j
)1/2

is the bending and
twisting effects,ψi j is the stretching and shearing coefficients,
γi j is the bending and twisting coefficients and summation con-
vention is not applied on bothi and j. For 1D filament,nd = 1
and the integral is taken along the filament, while for 2D plate,
nd = 2 and the integral is taken over the whole plate. The poten-
tial energy of external force (hydrodynamic force in the present
work) is expressed by

Eh =

∫
F f · (X−X0)dA, (8)

whereX0 is the initial position of the structure. Then the total
potential energy of the plate can be defined byΠ = Ek −Ep +
Eh. By using the Hamilton’s principle together with the vari-
ational derivative of the total potential energy, the governing
equation for the plate is obtained,
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whereσi j = ψi j(1−δi j/Ti j). Note that Eq. (9) is equivalent to
that in Ref. [17,25] for 1D filament and Ref. [5,16] for 2D plate
if the stretching and shearing effects are small.

Explicitly including the inertial force of the structure inthe IB
method when calculating the hydrodynamic stress on the sol-
id surface may easily destabilize the simulation. To address
this issue, we have incorporated a penalty IB method in the L-
B method [17]. In this method, the plate itself is assumed to be
massless, but a ghost plate of densitymp is attached to the phys-
ical plate through virtual springs of stiffnessKv (see figure 2).
The ghost plate only affects the dynamics of the physical plate
but is not seen by the flow solver directly. Thus, the density of
the fluid is a constantρ, and the Lagrangian force is modified to
incorporate the ghost plate,

F = Fk +Fe, Fk = Kv[Y−X], mp
∂2Y
∂t2 =−Fk, (10)

Virtual springs

Ghost filament
Y (s,t)

Physical filament
X (s,t)

Figure 2: The physical and ghost filaments are tethered together
by virtual springs [17].
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Figure 3: Applications of the IB-LB method: (a) 2D
NACA0012 foil, (b) 3D elliptical foil, (c) two flags in tandem
arrangement, and (d) a 3D red blood cell in a stenosed ves-
sel [3].

whereFk is the spring force,Fe is the elastic force given by
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, Kv is the stiff-

ness of virtual springs, andY is the position vector of the
point on the ghost plate connecting to pointX on the phys-
ical plate. Essentially, the effect of the inertia of the ghost
plate is cushioned through the virtual springs. This method
has been used to simulate hydrodynamic interaction between
the flexible plates/capsules and the incompressible viscous
flow [13,17–19].

The Lagrangian velocity, position of the physical plate, and
body force can be discretized as follows,

Un+1 = ∑
x

un+1(x, t)δh(x−Xn)∆V, Xn+1 = Xn +Un+1∆t, (11)

fn+1 = ∑
s

Fn+1(s, t)δh(x−Xn)∆A. (12)

In Eq. (12), ∆A = ∆s and ∆s1∆s2 for the 1D and 2D plates,
respectively, while in Eq. (11),∆V = ∆x∆y and∆V = ∆x∆y∆z
for the 2D and 3D simulations, respectively. The notations∑s
and∑x mean the sum over all the discrete points ofX and the
sum over all the discrete points ofx, respectively.δh is a smooth
approximation of Dirac’s delta function [9,10]. This version of
IB-LB method has been used in fish swimming, flag flapping
and red blood cell [3, 13,17–19,22,23], as shown in figure 3.

Sharp-interface immersed boundary–finite element method

In this section, we introduce the sharp-interface IB–finiteel-
ement (FE) method for 3D FSI involving large deformations.
The IB method for fluid solver was previously developed by
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Figure 4: 2D schematics illustrating the sharp-interface im-
mersed boundary method: (a) interpolation stencil, and (b)ex-
trapolation stencil [3].

Mittal et al. [7] and later improved by Luo et al. [6] and Tian
et al. [14, 15]. This method retains the sharp-interface repre-
sentation of the fluid–solid interface and employs local flowre-
construction to facilitate the finite difference discretization near
the immersed boundary. The 2D schematics of this method is
shown in figure 4. When the second-order central difference
scheme is applied to discretize the Navier–Stokes equations in
the fluid region near the fluid-solid interface, incomplete sten-
cils could be encountered. Specifically, on the node(i, j) in fig-
ure 4(a), the finite difference stencil will involve nodes(i−1, j)
and (i, j − 1) that are located inside the solid body. Here we
introduce two methods to update the variables on node(i, j).
In the first method, the variables on(i, j) are interpolated by
using the interpolation stencil shown in figure 4(a). A body in-
tercept (BI) point can be found by projecting the(i, j) onto the
boundary along the surface normal. The variable,ϕ, in the local
area around(i, j) is approximated byϕ= a1xy+a2x+a3y+a4,
wherea1, a2, a3 and a4 can be determined by using the val-
ues on BI, together with (i+1,j),(i, j + 1), and (i + 1, j + 1).
Then the value on(i, j) can be obtained byϕi, j = ∑4

m=1 βmϕm
whereϕm is one of the 4 data points. In the second method, we
first apply the extrapolation, and then use the finite difference
method. As shown in figure 4(b), to calculate the value on(i, j),
the values on(i−1, j) and(i, j −1) are first extrapolated, and
those on(i, j) are then calculated by using the finite difference
method. Take node(i− 1, j) as an example, the BI point can
be determined by the same way as the interpolation. The image
point (IP) can be found by taking the symmetrical point about
the boundary. The value on IP can be determined by using the
shaded stencil, i.e. the values at previous time step on BI,(i, j),
(i, j+1), and(i−1, j +1). Thenϕn

i−1, j = 2ϕn
BI −ϕn

IP. There-

fore,ϕn+1
i, j can be updated by the finite difference method. Itera-

tion is required in the cases where the points used to interpolate
the unknown values are in the solid region or immediately next
to the interface. In the practice, the numerical oscillations in the
moving boundary problems associated with the sudden change
of the stencils can be effectively reduced by applying the hybrid
scheme of these two methods [6,14,15].

The FE formulation in the structure solver is derived from the
standard virtual work method. Let the displacement in a vol-
ume element be represented byu(X ,Y,Z) = ∑k hk(X ,Y,Z)uk =
[H]{u}, wherehk(X ,Y,Z) is the shape function associated with
thekth node in the element anduk is the displacementu at this
node. Other variables can be expanded in a similar manner.

Using the virtual work of the inertial load, body force{b}, and
surface traction{ f } along with the expansion of the variables,
the assembled equation system for the entire body can be writ-

(a) (b)

Figure 5: Applications of the sharp-interface IB–FE method:
(a) vortical structures around a hoverfly and (b) modelling of
vocal-fold vibration [15,20].

ten as

[M]{ü}+[C]{u̇}= {P}−{F}, (13)

where [M] is the mass matrix,[C] is the mass-damping ma-
trix, {P} is the force vector from the external load, and{F}
is the body stress vector. These assembled terms can be found
in Refs. [14, 15]. For general 3D bodies, hexahedral (or brick-
type) quadratic 20-node elements [1] are used in the FE for-
mulation. The FE formulation of the thin-walled structuresin-
cludes the three-node plate elements and two-node frame el-
ements, where each node has six global degrees of freedom,
including three displacement components,ui, and three angles
of rotation, φi. The discrete equations can be written in the
same forms as in the general structure form, except that{u}
represents the generalized displacement vector withφi included
and[σK ] represents the generalized stress with moments includ-
ed. The large-displacement and small-strain deformation in the
structure solver is handled using the corotational scheme.The
time stepping is achieved using a case of Newmark scheme [4].

The fluid–structure coupling is done by iterating the two solver-
s by exchanging the boundary information until convergenceis
reached. The residuals as measured by the maximum errors of
the displacement, the velocity, and the traction at the solid sur-
face are used to determine whether final convergence is reached.
To ensure the numerical stability of this staggered iteration, the
velocity of the solid surface are updated in the flow solver ina

gradual fashion according tov(k+1)
b = αvp

b +(1−α)v(k)b , where
vp

b is the predicted velocity by the structure solver andα is the
relaxation factor between 0 and 1. The displacementXb in the
flow solver and the tractionF f in the structure solver can be
updated in a similar manner if necessary.

This method has been used in insect flight, and FSI during
phonation, as shown in figure 5.

Immersed boundary method for heat transfer and electro-
dynamics

Heat transfer can be described by∂T
∂t +u ·∇T = k∇2T . To ac-

count for the effect of the boundary, a heat source is applied
in the convection-diffusion equation,∂T

∂t +u ·∇T = k∇2T +q,
whereq is the heat source which is obtained by spreading La-
grangian heat sourceQ to the points near the boundary. For the
Dirichlet boundary condition,Q at n+1 step is calculated by

Qn+1 = (TB −T n)/∆t +un ·∇T n −k∇2T n, (14)

whereTB is the boundary temperature. For the Neumann bound-
ary condition,Q is determined by

Qn+1 = 2(QB +k
∂T n

∂n
). (15)



In the electrodynamics applications, the Poisson equation,
∇2Φ = −q, is generally used to describe the electric potential
field Φ. This equation can be rewritten as∂Φ/∂τ= ke(∇2Φ+q)
whereτ is the pseudo time. Then similar treatment as in heat
transfer can be used.

Conclusions

The IB method based on LB method and FE method has been
briefly introduced. The applications in insect flight, fish swim-
ming, red blood cells, FSI during phonation, heat transfer and
electrodynamics have been demonstrated. It shows that the IB
method is effective in modelling complex flows, fluid-structure
interactions and convection-diffusion processes.
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