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Abstract 

Lattice Boltzmann (LB) computational model is used to simulate 

autoignition (thermal explosion) development in mixtures with 

non-uniform initial temperature conditions. The paper 

demonstrates LB modeling application to practically important 

reacting flow problem. 

 

Complications to the classical thermal explosion problem arise in 

the presence of dynamical heat exchange (natural and/or forced 

convection), combined with non-uniform initial conditions in the 

reacting mixture. The present study reports critical conditions for 

thermal explosion in such circumstances. 

 

Introduction  

The problem of autoignition (also referred to as thermal 

explosion or thermal runaway) has been studied for decades in 

various formulations, e.g. [1-4]. Nevertheless, complications of 

this problem arising in the presence of dynamical heat exchange, 

either self-exerted by natural convection, or introduced by forced 

convection has been poorly investigated. Further complications 

arising from non-uniform initial conditions in reacting mixture 

have never been studied. The question of how the initial non-

uniformities in the mixture temperature field affect autoignition 

development is of practical importance. The present paper 

addresses this issue in the case of natural convection conditions. 

As is always the case in the theory of thermal explosion, critical 

conditions for autoignition are of primary interest. In the view of 

this, essentially an induction period of the thermal explosion is 

being modeled. The model predicts natural convective flows 

developing at this stage, associated chemical reaction and energy 

dissipation rates, as well as the onset of the thermal explosion 

(for super-critical conditions). 

The conditions leading to autoignition are formulated in terms of 

the critical Frank-Kamenetskii parameter. Effects of convection 

on the critical conditions are described using ratios of the 

respective critical Frank-Kamenetskii parameters to the ones 

corresponding to no-convection conditions. Effects of non-

uniform initial temperature distributions are described in terms of 

wavelength and amplitude of the temperature perturbation.   

The parameters that are varied in simulations are flow Rayleigh 

numbers, as well as geometrical parameters describing initial 

non-uniformities in the mixture temperature field.    

The Lattice Boltzmann (LB) method [5,6] is used as numerical 

technique in the present study. This approach becomes 

increasingly attractive as a fast and efficient method of solution 

of partial differential equations. However, application of LB 

method to combustion problems remains very limited, e.g. [7-

10]. The present study demonstrates the potential of LB method 

in application to such problems. In-house CFD code LBMComb 

[10] is used.   

Mathematical Model 

Flow is considered in the Boussinesq approximation. The 

rationale for this assumption is that effectively only induction 

period of thermal explosion is considered. Separation of 

explosion and no-explosion regimes becomes evident before 

temperature variations become large enough to fail the 

Boussinesq approximation. 

The set of governing equations is therefore as follows: 
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This non-dimensional form of equations is obtained by choosing 

the particular length scale L , velocity scale Lg , time scale 

1Lg , density scale 0  and pressure scale 0Lg . p is 

pressure deviation from the background level, Re and Pe are 

Reynolds and Peclet numbers, respectively, ge is a unit gravity 

vector. 

Excess temperature is defined as 
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Arrhenius number. The expression for the chemical source 

follows standard reaction rate dependence on temperature. 

Reactants consumption is neglected as only the induction stage of 

thermal explosion is considered. The Frank-Kamenetskii 
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slightly different manner compared to conventional. Here Q is 

the heat of reaction and B is the pre-exponential factor.  

The Lattice Boltzmann equation is used here with the Bhatnagar-

Gross-Krook (BGK) collision model. Accordingly, solutions of 

the continuum, momentum and energy equations (1-3) are 

approximated by the families of distribution functions 
,i uf and 

,if 
evolving by 
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on D3Q15 lattice [6]. Particular forms of distribution functions 

and collision frequencies 
,i  are also given in [6]. Force and 

source terms a  and S  are implemented based on their particular 

forms in (2,3).   

Computational Parameters 

Computational domain is cubic, with all the boundaries 

considered as solid walls with no-slip boundary condition for 

velocity and fixed boundary temperature 0  . 

Non-uniform initial temperature distribution is taken in various 

forms which are specified below in the Results section. 

The maximum temperature in the domain 
max  allows the 

Rayleigh number to be defined as 2
maxRe PrRa  . Results are 

obtained on a base grid consisting of 25x25x25 lattice cells 

(51x51x51 vertices). Computations performed on finer grids have 

produced identical results.  

Thermal properties of the media are taken as those of air, Prandtl 

number is fixed at Pr 0.7 ; 0.1Ar  , 0.5  .  

OPENMP embedded compiler directives are used for 

parallelization. 

The code has been validated against benchmark solutions for heat 

conduction, as well as for the laminar natural convection plume 

flow.   

Results and Discussion 

Principle effects of non-uniform initial conditions, combined 

with convective dynamics of the medium, can be clearly 

understood  if one considers the case of isolated non-uniformities 

first. 

Isolated Non-unifromities 

Consider an initial distribution in the form of the two peaks 
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, where 
1x and 

2x are 

fixed locations inside the domain. The peak temperature is taken 

as 
max 6.0   

This case clearly demonstrates the effect of Rayleigh number on 

the development of thermal explosion. The two distinctive 

regimes can be observed: 

1)  Convection plays negligible role at small Rayleigh numbers. 

Consequently, locations of the peak temperatures remain nearly 

constant in time. Evolution of the initial temperature field is 

controlled by thermal conduction. This limit corresponds to high 

viscosity and therefore, since Prandtl number  ~ 1O is fixed, to 

high thermal conductivity. Under the explosion limit (
cr  ) 

initial clouds diffuse completely. 

Above the explosion limit (
cr  ) the temperature grows 

infinitely at location(s) close to initial positions of the two 

temperature peaks. It should be noted that slightly above the 

explosion limit peak temperature may grow non-monotonically, 

i.e. it can decrease before growing infinitely at large times. 

2)  The system evolution at high Rayleigh numbers is more 

interesting. Natural convection plays essential role in this limit, 

and initial clouds ascend significantly in the process of explosion 

development. This regime is illustrated in figures 1,2. 

Below the explosion limit the initial temperature distribution 

dissipates and the mixture approaches thermal equilibrium. 

Different scenarios are possible above the explosion limit. First 

of all, temperature may grow rapidly in the narrow region located 

between the two merging thermal clouds. This scenario is 

demonstrated in figure 1 and occurs if initial separation distance 

between the clouds d  is relatively small. 

In the other scenario (figure 2) the two clouds evolve initially 

independently, but merge later to form hot layer under the top 

boundary of the domain. Temperature of this layer grows 

infinitely. This is the case when the initial cloud separation 

distance is large enough. 

Meaningful assessment of natural convection effect on explosion 

development is obtained upon comparison critical Frank-

Kamenetskii parameter to the similar critical parameter at no-

convection conditions. The latter is obtained when natural 

convection is artificially suppressed in simulations, i.e. for a 

quiescent medium. 

The results are presented in this way in figure 3. As expected, the 

ratio of the critical parameters is very close to 1 at low Rayleigh 

numbers where convection effect is negligible. The ratio then 

rises monotonically with Rayleigh number. This is explained by 

mixing and consequently enhanced cooling of the mixture 

exerted by natural convection. The critical Frank-Kamenetskii 

parameter under convection conditions becomes therefore larger 

than the corresponding parameter for pure conduction process. 

figure 3 also reveals the effect of initial separation distance d  

between the temperature peaks. Effectively, the presence of two 

clouds slows down the cooling rate of each one, since each cloud 

may come into contact with the hot surrounding, i.e. the other 

cloud. 

For large separation distances, such interaction may only occur at 

late stages of induction period, and the two clouds evolve largely 

separately. In this case the interaction effect is weak and the 

curve  
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for a single cloud, reported in our earlier work [10]. 

The interaction is most strong at short separation distances where 

the clouds merge quickly. The slowdown of cooling rate is 

expected to be more profound in this case and therefore the 

critical Frank-Kamenetskii parameter cannot increase 

significantly. This is confirmed by figure 3 (the curve 0.1d  ). 

General Case 

In general case, the initial non-uniform temperature distribution 

is taken in the form  
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The problem of interest is a separation of explosive and non-

explosive regimes depending on the amplitude of the initial 

distribution 
max  and its wavelength  . 

 

 
 



 

Figure 1.  Thermal explosion development at 76 10Ra   ; 0.1d   
 

 

 

Figure 2. Thermal explosion development at 76 10Ra   ; 0.5d   
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Figure 3. Critical Frank-Kamenetskii parameter ratio as a function of 

Rayleigh number  - 0.1d  ;  - 0.3d  ; - 0.5d   

 

Typical general case initial distribution is presented in figure 4. 

 

Figure 4. Initial temperature distribution for the case   0.35 and 

max 1  . 

 

The parameters that play role in general case are wavelength and 

amplitude of the initial distribution, Rayleigh number, and 

subcriticality. The latter parameter measures the proximity of the 

system to critical conditions at uniform initial temperature 

distribution, and may be defined as   /cr cr crS      for any 

given system with fixed parameters where 
cr  . Basic results 

for the general case are presented in figure 5. The curves consist 

of critical points  max, cr
cr   so that the region below each curve 

corresponds to thermal equilibrium conditions, and the region 

above corresponds to thermal explosion conditions.  

For a fixed max
cr points on the curves 1,2 and 3 correspond to 

different values of Rayleigh number 1Ra , 2Ra and 3Ra . 

 

Figure 5.  Critical  thermal  explosion  conditions  max, cr
cr   

3 2 2 1/ / 10Ra Ra Ra Ra  (fixed 
max )   0.0055crS   

Figure 5 demonstrates that for a fixed value of the maximum 

temperature max
cr the critical wavelength cr very quickly 

decreases with the increase of Rayleigh number. This is 

consistent with the observation that convection quickly cools hot 

spots in the media at high Rayleigh numbers, and consequently 

tighter spacing between the areas of elevated temperature is 

required to achieve thermal explosion (i.e. critical) conditions. 

Conclusions 

New results on the development of thermal explosion in non-

uniformly heated, convection-dominated media have been 

presented. It has been demonstrated that convection significantly 

hampers the development of thermal explosion. 
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