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Abstract

In Probability Density Function (PDF) methods applied to tur-
bulent flows, a modeled transport equation is solved for the joint
PDF of the fluid properties. Three recent studies are reviewed
in which the composition PDF method is used in conjunction
with a Large-Eddy Simulation (LES) to make calculations of
turbulent flames for which there are experimental data. These
are: a temporal non-premixed jet flame exhibiting local extinc-
tion and re-ignition; a bluff-body stabilized premixed flame;
and, a premixed opposed jet flame. These calculations demon-
strate the capabilities of the method to account for challenging
turbulence-chemistry interactions. PDF methods are also used
in the context of Reynolds-Averaged Navier-Stokes (RANS)
modeling, and two contributions are described to the develop-
ment and testing of the PDF sub-models used. It is shown that
the principal (tensor) coefficient in the Generalized Langevin
Model (GLM) for velocity is directly related to the conditional
mean fluid acceleration, and that it can be extracted from mea-
surements of the velocity-acceleration correlations. Second, a
new method is proposed for testing the Shadow-Position Mix-
ing Model (SPMM).

Introduction

This paper describes recent advances in PDF methods for tur-
bulent reactive flows—that is, modeling and simulation ap-
proaches based on a modeled transport equation for the joint
probability density function (PDF) of fluid properties. These
PDF methods are used both in the context of Reynolds-
Averaged Navier-Stokes (RANS) and in conjunction with
Large-Eddy Simulations (LES). Recent reviews of PDF meth-
ods in both contexts are provided in [9, 16].

In the next section we review recent LES/PDF simulations per-
formed at Cornell, which are for three qualitatively different tur-
bulent flames [27, 11]. Then, in the following two sections, we
review two recent developments in PDF modeling in the RANS
context, namely: an improved understanding of the underly-
ing Generalized Langevin Model (GLM) [17]; and, the shadow-
position mixing model [15], to model the effects of molecular
mixing.

Recent LES/PDF Simulations

The LES/PDF simulations described in the following three sub-
sections are based on the same models and codes. The low
Mach number, finite-difference LES code NGA [3] is used to
solve the mass and momentum conservation equations for the
resolved velocity, and also for the specific volume (i.e., the in-
verse of the resolved density). The particle/mesh code HPDF
[26] solves the modeled transport equation for the joint PDF of
the fluid composition (i.e., the species specific moles and sensi-
ble enthalpy). Using the algorithm described in [18], the PDF
code provides the specific volume and its rate of change to the
LES code.

The dynamic Smagorinsky model [6] is used to determine the
residual stresses, and the IEM mixing model [24] is imple-
mented using the algorithm described in [25], which allows dif-
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Figure 4: The mean temperature in the whole domain conditioned on mixture fraction at
t = 0, 20, 40tj in low and high Reynolds numbers cases.
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Figure 5: Normalized conditional diffusion and PDFs of mixture fraction at y/H = 0 in
DNS (symbols) and LES/PDF (lines) for Re = 9079.
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Figure 1: Temperature (K) conditional on mixture fraction ψξ

in the temporal jet flame at Re = 2,510 (left) and Re = 9,079
(right) at t/t j = 20 and 40. Symbols, DNS [7]; Solid lines,
LES/PDF [27]; Dashed line, t/t j = 0. (From [27])

ferential diffusion to be accounted for.

Temporally-Evolving Non-Premixed Jet Flame

In [27], LES/PDF calculations are reported for the temporal
jet flame studied using direct numerical simulation (DNS) by
Hawkes et al. [7]. At the initial time (t=0), there is a slab of
thickness H of fuel composed of CO/H2/N2 (50/10/40 by vol-
ume) moving to the right at speed U/2, on both sides of which
there is oxidant O2/N2 (25/75 by volume) moving to the left at
speed U/2. The interface between the fuel and oxidant is spec-
ified according to a laminar flame profile. The DNS use de-
tailed, molecular transport and an 11-species chemical mecha-
nism. Two Reynolds numbers (based on U , H, and the viscosity
of the fuel) are studied, Re= 2,510 and Re= 9,079. Time in the
simulation is measured relative to the reference time t j ≡H/U .

As time evolves, turbulence is generated in the shear layers sep-
arating the fuel from the oxidant, and reaction and mixing take
place. A principal finding in the DNS study is that (by design)
there is significant local extinction around t/t j = 20, more so at
the higher Reynolds number, and this is followed by reignition.
This is evident in figure 1, which shows the conditional mean
temperature, conditional on the mixture fraction. As may also
be seen from the figure, the LES/PDF calculations quite accu-
rately represent both the extinction (evidenced by the depressed
temperatures at t/t j = 20) as well as the reignition.

Bluff-Body Stabilized Premixed Flame

In [11], the same LES/PDF methodology is applied to a pre-
mixed flame, stabilized on a triangular flame-holder in a square
duct, which has been studied experimentally by Sjunnesson et
al. [20]. Figure 2 shows a sketch of the flow and a visual-
ization of the flame obtained from an instantaneous field of
the resolved mass fraction of CO. The flame-holder height is
h = 4cm, and the duct’s square cross-section is 4h× 4h. The
nominally uniform stream (upstream of the flame-holder) is pre-
mixed propane/air, with an equivalence ratio of 0.6, at a temper-
ature of 600K, and a velocity of 34m/s.
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Figure 1. A schematic diagram for the computational domain on the x-y plane.
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Figure 2. (a) Instantaneous iso-surface of YCO = 0.003 and (b) instantaneous contours of temperature at
several streamwise locations. Both plots are obtained at t = 0.2s. Gray-scale contours represent instanta-
neous pressure.
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Figure 3. Time-averaged streamwise velocity on the channel midplane (y = 0).

Figure 2: Instantaneous constant-property surface YCO = 0.003
from LES/PDF calculations [11] of the “Volvo” premixed flame
[20]. (From [11])
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Figure 16. Time-averaged mass fractions of CO at (a) x/h = 3.75 and (b) 8.75; solid line, ISAT; dashed
line, RCCE/ISAT (nrs = 11); dashed-dot line, RCCE/ISAT (nrs = 16); symbol, the Volvo measure-
ment [31].
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Figure 17. Wall-clock time statistics for the computational modules of the current LES/PDF simulations.
TMRMT represents wall-clock time for particle transport, mixing, reaction, mixing, and particle transport.

Figure 3: Lateral profiles of the mean mass fraction of CO
at an axial distance of x/h = 3.75 in the “Volvo” rig. Sym-
bols, experimental data [20]; Lines, from LES/PDF calculations
[11]. Solid line, 30-species mechanism; dashed line, RCCE
with nrs = 11; dash-dot line, RCCE with nrs = 16. (From [11])

As an example of the LES/PDF calculations, figure 3 shows
the lateral profile of the mean mass fraction of CO at a dis-
tance of 3.75h downstream of the flame-holder. The three
lines (barely distinguishable) are for different treatments of
the propane chemistry: a detailed 30-species mechanism; and
two calculations using Rate-Controlled Constrained Equilib-
rium (RCCE) with 11 and 16 represented species. These calcu-
lations demonstrate the capabilities of the LES/PDF approach,
and also show that the chemistry can (in this case) be reduced
to computational advantage, without significantly compromis-
ing accuracy.

Premixed Opposed Jet Flame

The third flame, recently studied using LES/PDF, is the turbu-
lent counter-flow flame studied experimentally by Coriton et al.
[1]. The flame is formed between two opposed jets. The top
jet is a highly turbulent stream of premixed CH4/O2/N2 mix-
ture (equivalence ratio 0.85, O2/N2 molar ratio 30/70) at 294K
flowing at 11.2m/s. The bottom jet is a fully burnt stoichio-
metric CH4/O2/N2 mixture (O2/N2 molar ratio 26/74) at 1850K

Figure 4: For the turbulent counterflow flame, the mean reaction
progress variable conditional on the distance ∆ from the GMLI.
Symbols, experimental measurements [1]; line, LES/PDF.

flowing at 38.2m/s.

In the simulations, the computational domain is taken as a cylin-
drical region between the two nozzle exits (excluding the region
upstream of the nozzle exits) to focus on the combustion region
and to make the LES/PDF calculations affordable. A new treat-
ment is developed for the inflow velocity boundary conditions
at the nozzle exits to match the mean and r.m.s. velocities and
the turbulent length scales in the simulations to those in the ex-
periments.

In the experiment [1], OH imaging is used to define the Gas
Mixing Layer Interface (GMLI) as the location on the center-
line where the OH concentration first deviates from its value in
the hot-product stream. When there is a robust, burning flame,
the OH rises steeply at the GMLI as the reaction zone is encoun-
tered, and then, after some distance, it decreases as the preheat
zone is reached. The reaction progress variable c is defined to
be unity between the GMLI and the preheat zone, and zero ev-
erywhere else. But when there is local extinction, moving from
the product stream towards the reactants, the OH drops, essen-
tially to zero. In this extinguished case, c is defined to be zero
everywhere.

Good agreement with the experimental data [1] is observed for
unconditional velocity and reaction progress variable statistics.
However, it is most informative to look at statistics conditioned
on distance from the GMLI. Figure 4 shows the mean of c con-
ditional on the distance ∆ from the GMLI. As may be seen, the
LES/PDF calculations agree at least qualitatively with the mea-
surements. Note, however, that the quantity 1−〈c |∆ = 0〉 is
the probability of there being local extinction, and the measured
value is about twice that in the LES/PDF.

Furthermore, particle data are analyzed from the PDF code.
Figure 5 shows the scatter plot between the mass fractions of
CO and CO2. It can be noted that there is inert mixing be-
tween the burnt stream and the partially-burnt reactants (branch
between “B” and “E” in figure 5) and on the reactant side, par-
ticles align close to the laminar solution, especially at higher
temperatures (branch between “R” and “E” in figure 5).

Improved Understanding of the Generalized Langevin
Model

The calculations described in the previous section are based



Figure 5: For the turbulent counterflow flame, scatter plot of
CO mass fraction vs. CO2 mass fraction obtained from the PDF
code particle data. Dots, particle data from a cylindrical region
around the centerline; R, cold, unburnt, premixed reactants; E,
equilibirum composition of reactants; B, hot products stream;
black solid line, CHEMKIN’s OPPDIF laminar solution; black
dash lines, mixing line between R & E and B & E; magenta
solid line, mixing line between R & B.

on the composition PDF, used in conjunction with LES. In
the RANS context, a complete model is provided by the joint
PDF of velocity, composition and the turbulence frequency
[23, 13]. This joint PDF model has been used extensively
to model a broad range of reacting and non-reacting turbulent
flows [14, 16].

Here, following [17], we re-examine the turbulence modeling
involved in this joint PDF equation. To do so, it is sufficient
to consider the velocity PDF in constant-property flow, and (in
order to provide scale information) we consider the mean dissi-
pation rate ε to be known.

A stochastic Lagrangian approach is taken to the modeling, in
which a stochastic model is used to describe the fluid velocity
U∗(t) following a fluid particle with position X∗(t), which, by
definition evolves according to dX∗/dt = U∗. The prevalent
model for U∗ is the Generalized Langevin Model (GLM) [8,
13]:

dU∗i =− 1
ρ

∂〈p〉
∂xi

dt +Gi ju∗j dt +(C0ε)1/2 dWi. (1)

The left-hand side is the infinitesimal increment in velocity over
the infinitesimal time interval dt. In the first term on the right-
hand side, ρ is the density, 〈p(x, t)〉 is the mean pressure, and
this term ensures that the GLM is consistent with the mean mo-
mentum equation (neglecting viscous terms). In the next term,
Gi j is the GLM model coefficient—the focus of our attention—
and u∗ is the fluctuating component of the particle velocity
u∗(t) ≡ U∗(t)−〈U(X∗(t), t)〉, where 〈U(x, t)〉 is the Eulerian
mean velocity field. In the final term, W(t) is an isotropic
Wiener process, whose infinitesimal increments have the prop-
erties 〈dW〉 = 0 and 〈dWidW j〉 = dt δi j . This diffusion term
makes the model consistent with the Kolmogorov hypotheses
(when it is examined for time intervals in the inertial subrange),
and the model coefficient C0 is related to a Kolmogorov con-
stant. The coefficient Gi j is modeled (locally) as a function of
the Reynolds stresses 〈uiu j〉, the mean velocity gradients and ε.

Heretofore, a close connection has not been made between

the GLM and the Navier-Stokes equations; and, as a conse-
quence, Gi j has not been related to measurable quantities. The
reason for this is that the GLM models the fluid acceleration
A ≡ DU/Dt as white noise, whereas according to the Navier-
Stokes equations the acceleration is of course a smooth func-
tion.

To remedy these problems, we write the stochastic model for
U∗(t) in the more general form

dU∗ = A(p) dt +dU(n), (2)

where the drift coefficient A(p) may depend on U∗ and lo-
cal statistics obtained from ε and the PDF of velocity (e.g.,
Reynolds stresses and mean velocity gradients), and hence it
is more completely written as A(p)(U∗(t),X∗(t), t).

The random increment dU(n) is defined by

dU (n)
i ≡−1

2
C0ελi ju∗j dt +(C0ε)1/2 dWi, (3)

where λi j denotes the i- j component of the inverse of the
Reynolds-stress tensor.

This component of the model is specially constructed so that

1. It vanishes in the mean momentum equation derived from
Eq. 2

2. It vanishes in the Reynolds-stress equation derived from
Eq. 2

3. If the velocity PDF is joint normal, then it also vanishes in
the PDF equation derived from Eq. 2.

That is, in Eq. 3, the term in λi j is designed to nullify the effect
of the diffusion term (involving dW) in statistical equations.

By comparing the PDF equation derived from Eq. 2 (with the
neglect of the contribution, if any, from dU(n)) to the exact PDF
equation, we deduce that, in order for the PDF to evolve cor-
rectly, the coefficient A(p) must satisfy the requirement

A(p)(V ,x, t) = 〈A(x, t) |U(x, t) = V〉, (4)

where V is a sample space variable for velocity. That is, the
correct specification of A(p) is that it is equal to the conditional
expectation of the fluid acceleration.

We have thus established a direct connection between the co-
efficient A(p) and the Navier-Stokes equations which determine
the fluid acceleration A. The superscript “(p)” is used to convey
that A(p) is the “physical” component of acceleration, whereas
dU(n) is the non-physical increment in velocity.

Both A and A(p) can be decomposed into their (unconditional)
means and their fluctuations, which are denoted a and a(p), re-
spectively. The means are simply −∇〈p〉/ρ, as in the GLM.
And then the requirement on a(p) is simply

a(p)(v ,x, t) = 〈a(x, t) |u(x, t) = v〉, (5)

where u is the velocity fluctuation (u≡ U−〈U〉), and v≡ V−
〈U〉 is the corresponding sample-space variable.

There is some evidence from DNS [19] that 〈a |v〉 can be ap-
proximated as being linear in velocity, and hence (similar to
GLM) we consider the linear model

a(p)
i = G(p)

i j v j, (6)



where the coefficient G(p)
i j is to be determined. From Eqs. 4 and

6 we can obtain an explicit expression for G(p)
i j :

G(p)
i j = 〈aiuk〉λk j, (7)

where we recall that λi j denotes the i- j component of the inverse
of the Reynolds-stress tensor.

With the advent of particle-tracking velocimetry [12, 5] and to-
mographic particle image velocimetry (PIV) [4, 2], it is now
possible to make measurements of 〈a |v〉 and 〈uia j〉, and hence

the model coefficients a(p)(v) and G(p)
i j can be obtained directly

from laboratory experiments (as they can from DNS).

The Shadow-Position Mixing Model

PDF methods have been most widely used for turbulent reactive
flows, especially for turbulent combustion. Following a fluid
particle, the composition changes due to just two processes:
reaction and molecular diffusion. A great advantage of PDF
methods is that reaction can be treated using a detailed chemical
mechanism, without further modeling. The effects of molecular
diffusion, on the other hand, have to be modeled by means of
a “mixing model”. Since the 1970s, many mixing models have
been proposed, the most widely used having the initials IEM
[24], MC [10] and EMST [21].

Recently, Pope [15] introduced the Shadow-Position Mixing
Model (SPPM), which is claimed to remove serious deficiencies
in previous models. In particular it is (to a good approximation)
consistent with Taylor’s theory of turbulent dispersion [22], and
(also to a good approximation) the mixing is “local” in com-
position space. It also avoids the “stranding”, convergence and
transformation problems suffered by EMST, which is the only
other “local” model.

According to the SPMM, the composition φ
∗(t) of the particle

evolves due to mixing by:

dφ
∗

dt
=− c

TL
(φ∗−〈φ∗ |R∗,X∗〉), (8)

where c is a model constant, TL is the Lagrangian velocity inte-
gral time scale, and R∗(t) is a new, non-physical particle prop-
erty called the “shadow displacement” that evolves by a spec-
ified stochastic differential equation. (The shadow position is
Z∗ ≡ X∗+R∗.) Thus, according to the SPMM, the fluid com-
position relaxes to its local conditional mean, conditional on the
shadow displacement.

As with all models, it would be useful to be able to test the
SPMM’s underlying assumptions using experiments or DNS. A
significant difficulty, though, is that the model involves the non-
physical (and hence unmeasurable) quantity R∗. Fluid particles
can be tracked in DNS, and the equation for R∗(t) can be inte-
grated, but this requires additional planning, cost and effort.

Here we propose a method to test SPMM which can be em-
ployed both in experiments and in DNS post-processing (with-
out the need for particle tracking or other special measures).
The method is applicable to two-stream mixing problems in
which statistics vary mainly in one predominant direction. This
is the case for laboratory jet flames, and for the statistically one-
dimensional, temporal jet flames studied in DNS [7].

Considering such flows, we define the mixture fraction ξ to be
a conserved scalar that is zero in one stream and unity in the
other. The relevant particle properties are: the components of
position X∗, velocity U∗ and shadow displacement R∗ in the di-
rection of variation, and the mixture fraction ξ∗. For the ideal-

ized case of statistically-stationary, homogeneous isotropic tur-
bulence with a uniform mean mixture fraction gradient (as con-
sidered in [15]), it is found that the variables, U∗, R∗ and ξ∗

are quite highly correlated. Specifically, in an obvious notation,
the correlation coefficients are ρUR =−0.58, ρUξ =−0.55, and
ρRξ = 0.95. (It is the high correlation between R∗ and the com-
position (here ξ∗) that makes the model “local”.)

The proposed method is to generate a surrogate, R̄∗, for R∗,
based on the values of U∗ and ξ∗, and to use this surrogate in
place of R∗ in the SPMM. The surrogate is defined to be the
Gaussian random variable with specified values of the correla-
tions coefficients, ρUR and ρRξ. Specifically, we specify

ρUR = ρ
o
UR and ρRξ = ρ

o
Rξ

(
ρUξ

ρo
Uξ

)
, (9)

where the superscript o denotes the value (given above) for the
mean-scalar-gradient case. That is, ρUR is specified to be the
same as in the mean-scalar-gradient case; and ρRξ is specified
to vary linearly with ρUξ and to yield the correct value in the
mean-scalar-gradient case. This specification is examined fur-
ther in the next sub-section, and Eq. 9 is modified to ensure
realizability for large values of |ρUξ|.

The surrogate R̄∗ can be written

R̄∗

σR
= α

(
U∗−〈U〉

σU

)
+β

(
ξ∗−〈ξ〉

σξ

)
+ γη, (10)

where η is a standardized Gaussian random variable (with zero
mean and unit variance), σU denotes the standard deviation of
U∗, etc., and α, β and γ are constants determined by the spec-
ified values of ρUR and ρRξ, and the normalization condition
〈(R̄∗/σR)

2〉 = 1. (Since R̄∗ is used only for conditioning, the
value of σR is immaterial.)

For the case ρUξ = ρo
Uξ

, the values of the constants are

α =−0.077, β = 0.91 and γ = 0.30. (11)

The large value of β reflects the strong correlation between R∗

and ξ∗. The relatively small value of γ shows that a knowl-
edge of U∗ and ξ∗ reduces the variance of R∗ by 70%. It is
this observation, that U∗ and ξ∗ largely determine R∗, that pro-
vides grounds for supposing that conditioning on the surrogate
R̄∗ provides a good approximation to conditioning on R∗.

In order to test the proposed method, the “reactive mixing layer”
test case described in Sec.V.A of [15] is performed both with the
SPMM (based on R∗), and with the SPPM using the surrogate
R̄∗, which we denote by S-SPMM. The default values of the
SPMM constant a = 1.0 is used: the reader is referred to [15]
for further information about the test case.

Figures 6 and 7 show the profiles of the standard deviation of
mixture fraction σξ and of the scalar flux 〈uξ〉 = 〈U∗ξ∗〉 ob-
tained (at the statistically-stationary state) using both methods.
As may be seen, there profiles are very similar, with the devia-
tions at the peak being 5% and 10%, respectively.

This reactive-mixing-layer case is very revealing. It involves
two compositions: the mixture fraction ξ, and the product mass
fraction Y , which is bounded by zero (corresponding to com-
plete extinction) and the fully-burnt value Y f (ξ). The known
solution is that the fluid is everywhere in the fully burnt state
(i.e., Y ∗ = Y f (ξ

∗)), whereas non-local models such as IEM in-
correctly predict extinction. The SPMM becomes progressively
non-local as the model constant a increases from its minimum
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Figure 6: Profile of the standard deviation for the mixture frac-
tion in the reactive-mixing-layer test case in the statistically-
stationary state. Blue line - SPMM; Green line - S-SPMM.
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Figure 7: Profile of (minus) the scalar flux for the reactive-
mixing-layer test case in the statistically-stationary state. Blue
line - SPMM; Green line - S-SPMM.

value (amin ≈ 0.87). It is found that both SPMM and S-SPPM
yield burning solutions for a = 1.0 and 1.1, but extinguished
solutions for a = 1.2 and higher. Thus the surrogate model cap-
tures the essential qualities of SPPM.

The Specification of the R-ξ Correlation Coefficient

We now examine further the specification of the R-ξ correlation
coefficient, ρRξ, given by Eq. 9.

First, shown in figure 8 is a scatter plot of ρRξ vs. ρUξ obtained
from the reactive-mixing-layer test case, for all times and for
all locations. As may be seen, this amply justifies the linearity
assumption embodied in Eq. 9.

Second, we observe that Eq. 9 yields non-realizable values of
ρRξ ( i.e., |ρRξ| > 1) for values of |ρUξ| greater than ρcrit ≡
|ρo

Uξ
/ρo

Rξ
| ≈ 0.58, and therefore a modification to Eq. 9 is

needed to produce an acceptable, realizable model.
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Figure 8: Scatter plot of the R-ξ correlation coefficient vs. the
U-ξ correlation coefficient for the reactive-mixing-layer test
case, for all times and locations color-coded by time. The
largest magnitudes are at early times.

For |ρUξ| = ρcrit, we have |ρRξ| = 1, and so R∗ is completely
determined by ξ∗. Equivalently, the conditional variance of R∗

(conditional on ξ∗) is zero. For |ρUξ|> ρcrit we modify Eq. 9 by
specifying ρRξ to be as large as possible (in magnitude) while
maintaining realizability. With this specification, the variance
of R∗ conditional on U∗ and ξ∗ is zero. The corresponding
equation for ρRξ is obtained from the requirement that the deter-
minant of the correlation-coefficient matrix be zero. The result
is:

ρRξ = ρUξρ
o
UR− sign(ρUξ)[(1−ρ

2
Uξ

)(1−ρ
o2
UR)]

1/2. (12)

Thus, the modified specification, shown in figure 9, is Eq. 9 for
|ρUξ| ≤ ρcrit, and Eq. 12 for |ρUξ| ≥ ρcrit.

Figure 10 shows the corresponding coefficients in the specifica-
tion of the Gaussian surrogate by Eq. 10. Note that the coeffi-
cient γ of the random term is zero for |ρUξ| ≥ ρcrit.

A Priori Testing of the Shadow Position Mixing Model

We now describe how the surrogate shadow position can be used
in the testing of the SPMM. We consider a single location x and
time t at which there are many samples (from experiment or
DNS) of: the velocity U ; the mixture fraction ξ; the composi-
tion φ (or some components thereof); and, the diffusion term D
in the composition evolution equation. (Note that D can be ex-
tracted from DNS and experiments, either directly, or, for non-
reactive compositions, from D = Dφ/Dt.) An estimate of the
Lagrangian time scale TL is also needed.

The testing can be performed following these steps:

1. From the samples of U and ξ, estimate the required statis-
tics, i.e., 〈U〉, 〈ξ〉, σU , σξ, and ρUξ.

2. Specify ρUR and ρRξ based on Eqs. 9 and 12, and deter-
mine the coefficients α, β and γ in Eq. 10.

3. For each sample, generate the surrogate shadow position
R̄ using Eq. 10.

4. Evaluate the conditional means 〈φ | R̄= R̂〉, the conditional
diffusion Dc(ψ, R̂)≡ 〈D |φ = ψ, R̄ = R̂〉 and the S-SPMM
model for it Dm(ψ, R̂)≡ (−c/TL)(ψ−〈φ | R̄ = R̂〉).
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coefficients in Eq. 10: blue - α; green - β; red - γ.

5. Compare Dm(ψ, R̂) to Dc(ψ, R̂).

6. Form and compare 〈Dm(ψ, R̄)〉 and 〈Dc(ψ, R̄)〉, where the
averaging is over R̄.

Note that the test in 6, which is weaker than that in 5, is suffi-
cient for the composition PDF to evolve correctly.

Conclusions

Good progress is being made in both the application and un-
derstanding of PDF methods for turbulent reactive flows. The
three LES/PDF calculations reviewed illustrate the capabilities
of this methodology to treat challenging turbulent-chemistry in-
teractions in both premixed and non-premixed flames.

For the Generalized Langevin Model (GLM), used to model the
fluid particle velocity, a decomposition of the velocity incre-
ment (Eq. 2) is given that identifies the physical component of
acceleration A(p). For the model to be exact, this must be equal
to the fluid acceleration, in conditional expectation (Eq. 4).

With the assumption of linearity made in the GLM, the result-
ing tensor coefficient G(p)

i j is directly related to the velocity-
acceleration correlations (by Eq. 7).

A new method is proposed for testing the Shadow-Position Mix-
ing Model (SPMM) in two-stream reactive mixing problems
(e.g., jet flames). This is based on the surrogate shadow posi-
tion R̄∗ defined by Eq. 10, which is determined by the velocity
U∗ and mixture fraction ξ∗. Since both U∗ and ξ∗ are measur-
able, so is the surrogate R̄∗, whereas the shadow position R∗ is
an unmeasurable, non-physical quantity. It is demonstrated that
the SPMM using the surrogate (denoted S-SPPM) yields results
that are very similar (e.g., to within 10%) to those of the SPMM.
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