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Transformation of Internal Waves at the Bottom Ledge
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Abstract

Transformation of internal gravity waves on the oceanic shelf is
studied theoretically and numerically within the framework of
the linear approximation. It is assumed that internal waves pass
over the continental shelf experiencing partial transmission and
reflection. The problem is studied for the simplified model of
the shelf represented by the sharp bottom ledge. The fluid strat-
ification is assumed to be a two-layer with the density of the
upper layer being ρ0, and the density of the lower layer being
ρ1. The theoretical approximate formulae are proposed for the
transmission and reflection coefficients as the functions of an in-
coming wave number, density ratio, a depth of the interface be-
tween the layers, and depth ratio before and after the ledge edge.
Results of direct numerical modelling of linear internal waves
transformation are presented as functions of all aforementioned
parameters. The modelling was undertaken by means of the
numerical code MITgcm. The results obtained are analysed in
details and compared against the proposed formulae.

Introduction

Internal waves, as well as surface waves, play an important
role in the near-shore processes, including mixing, turbulence
generation, dissipation of wave energy, transport of sediments,
etc. They can affect on the engineering offshore constructions
(e.g., gas and oil pipelines, platforms) and cause negative ef-
fects on the navigation of ships (due to the “dead water” effect,
for instance) and submarines. Intense internal waves are usu-
ally generated by the barotropic tide when it interacts with the
continental shelf. There are also some other mechanisms which
generate moderate and small amplitude internal wavetrains in
the open ocean. Internal waves propagating onshore experience
an interaction with the non-uniform bottom relief which causes
wave transformation, breaking, dissipation and leads to mixing
processes. There are many papers devoted to transformation of
internal waves in the coastal zones (see, e.g., [5, 16, 8, 9] and
references therein).

One of the processes occurring in the coastal zone is wave trans-
formation on the underwater obstacles, in particular, on bottom
ledges. Transformation of surface waves on the step-wise bot-
tom obstacles have been studied in many papers both in the li-
near approximation and in the nonlinear cases (see, e.g., [13, 4]
and references therein). Both the approximate and rigorous ap-
proaches have been developed and tested against the results of
numerical modelling and laboratory experiments. In the mean-
time, the transformation of internal waves were studied much
less. The coefficients of transformation (the transmission and
reflection coefficients) were obtained only for infinitely long
waves in the linear approximation for two-layer model of fluid
[5, 16, 8, 9]. Using these coefficients the transformation of posi-
tive polarity internal solitons of small and moderate amplitudes
on a bottom ledge has been studied in those papers; then the
subsequent disintegration of a transmitted wave onto secondary
solitons has been calculated both theoretically and numerically

within the framework of the Korteweg–de Vries and Gardner
equations. The transformation of large amplitude solitary waves
of negative polarity on the bottom ledge has been studied nu-
merically within the fully nonlinear set of hydrodynamic equa-
tions [8, 9].

The problem of wavetrain transformation for waves of arbitrary
length remained unresolved thus far even in the linear approx-
imation. In this paper we present results of direct numerical
modelling of transformation of small-amplitude internal wave-
trains on the underwater step-wise barrier in two-layer fluid. We
show that the transformation coefficients can be approximated
by relatively simple formulae.

Numerical Modelling of Internal Wave Transformation

For the numerical modelling of internal wave transformation
we utilized the numerical code MITgcm [10, 1], which is based
on the solution of Navier–Stocks equation. We assume that the
water is incompressible and inviscid fluid, and the motion is
non-vortical. The latter assumption allows us to introduce the
velocity potential in each layer v0,1 =∇ϕ0,1, where index 0 per-
tains to the upper layer, and index 1 – to the lower. The sketch
of the computational domain is shown in figure 1. The imper-
meable and free-slip boundary conditions were prescribed at all
solid boundaries including the left and right bounding walls.

Figure 1. Sketch of the domain.

The fluid densities ρ0,1 in the layers were chosen close to the
real oceanic conditions, so that the traditional Boussinesq ap-
proximation (see, e.g., [3]) was applicable, i.e. ρ1−ρ0� ρ0,1
and the parameter a = ρ0/ρ1 = 0.9961.

The initial perturbation on the interface between two layers was
set in the form of the wavetrain with the given carrier wave-
length. Its position was chosen far away from the edge of the
bottom step in the domain with the depth h1. The initial ve-
locity potentials in both layers were chosen from the solution
of the linearised problem for a monochromatic wave with the
given wavelength such that the wavetrain started to move to-
wards the bottom obstacle as shown in figure 1. The shape of
the envelope was chosen in the form of Gaussian pulse with the
characteristic width D which was four times greater than the
wavelength of the carrier wave. Thus, the initial perturbations



of basic variables were prescribed by the following equations:
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[
− (x̃− x̃c)

2

D2

]
exp(−iκx̃),

ϕ0(0,x,z) =−i
Ω

κ

coshκ(z̃−h0/h1)

sinh(κh0/h1)
η(0,x),

ϕ1(0,x,z) = i
Ω

κ

coshκ(z̃+1)
sinh(κ)

η(0,x),

(1)

where x̃ = x/h1 and z̃ = z/h1 are dimensionless coordinates,
Ãi = Ai/h1 is the dimensionless amplitude of the wavetrain, x̃c
is the initial position of the wavetrain center. The amplitude of
the perturbation was chosen so small that the linear theory was
applicable, in particular, we put Ãi =min(h2/h1,h0/h1,1)/500.

The calculation domain was covered by a mesh with different
resolutions in the horizontal and vertical directions. In the hor-
izontal direction there were at least 20 mesh nodes per a min-
imal wavelength, whereas in the vertical direction there were
120 nodes in the calculation domain.

Derivation of the Approximative Formulae

To obtain the formulae for the coefficients of internal wave
transformation on the bottom step (the coefficients of transmis-
sion T and reflection R) we use the approach that was suggested
in our recent papers for surface waves [4, 6]. The idea of deriva-
tion of the approximate formulae is based on the Lamb formula
suggested in his famous book [7] for infinitely long linear waves
in channels of variable cross-section. In particular, when the
width of the channel is constant, but the depth changes abruptly
from h1 to h2, Lamb’s formulae read:

T =
2

1+ c2/c1
=

2
1+
√

h2/h1
, (2)

R =
1− c2/c1

1+ c2/c1
=

1−
√

h2/h1

1+
√

h2/h1
, (3)

where the transmission coefficient T = At/Ai is the ratio of
transmitted wave amplitude At with respect to the amplitude of
incident wave Ai, similarly the reflection coefficient R = Ar/Ai
is the ratio of reflected wave amplitude Ar with respect to the
amplitude of incident wave Ai. Then c1 and c2 are wave speeds
in the region with the depths h1 and h2, respectively (see fig-
ure 1. In the case of surface waves the upper layer of infinitely
large thickness h0 has negligibly small density ρ0, and the inter-
face η(t,x) plays a role of the free surface). In the long waves
approximation the phase and group speeds of linear waves are
equal, therefore c1,2 =

√
gh1,2 are just the long wave speeds

in the corresponding domains. Lamb’s formulae where rigor-
ously substantiated by Bartholomeusz [2] who derived integral
equations for the determining the transformation coefficients for
surface waves of arbitrary length. However, solutions to the in-
tegral equations were not obtained in his paper, but only the
asymptotic analysis was performed for infinitely long waves.
The transformation coefficients were derived much later by dif-
ferent authors using the approach suggested by Takano [14, 15]
(see also [12, 11]).

Unfortunately, in the aforementioned papers the transformation
coefficients were obtained numerically by means of solution of
the truncated set of infinite number of algebraic equations. In
such form the results obtained are not handy for practical appli-
cations and analysis of their dependence on hydrological param-
eters. In the paper [4] there were suggested the approximative
formulae which represent the transformation coefficients in the

closed forms convenient for the analysis and practical applica-
tion. It was shown that there is a good agreement between the
results of direct numerical modelling of surface wave transfor-
mation on a bottom step and predications on the basis of ap-
proximative formulae. In the subsequent paper [6] the accu-
racy of the approximative formulae was studied thoroughly by
comparison with the results of rigorous theory, direct numerical
calculations, and the low of of energy flux conservation. In par-
ticular, it was shown that the maximal error for the transmission
coefficient does not exceed 5% of the exact value (for the re-
flection coefficient the error is much greater, but this coefficient
is not so important in practice).

In the derivation of approximate formulae for the transforma-
tion coefficients it was assumed that the structure of Lamb’s for-
mulae (2) and (3) remains the same, where however either group
or phase speeds should be used. It was found that the results of
direct numerical calculations of transmitted and reflected sur-
face waves can be well approximated if one uses group speeds
in the formula for the transmission coefficient and phase speeds
for the reflection coefficient.

The same approach we are suggesting in this paper for the trans-
formation coefficients of internal waves. The dispersion relation
between the wave frequency and wavenumber can be easily de-
rived for internal waves in two-layer fluid (see, e.g., [7, 3]). In
the particular case of rigid-lid approximation filtering surface
waves, it reads

ω̃
2 =

κ(1−a)
acoth(κh0/h1)+ cothκ

, (4)

ω̃
2 =

q(1−a)
acoth(qh0/h1)+ coth(qh2/h1)

, (5)

where ω̃2 = ω2(ρ1h0 + ρ0h1)/[g(ρ1− ρ0)h0h1], a = ρ0/ρ1 is
the density ratio, κ = k1h1 is the dimensionless wavenumber of
the incident and reflected waves, q = k2h1 is the dimensionless
wavenumber of the transmitted wave.

From these dispersion relations one can derive the expressions
for the group and phase speeds in front of the bottom step and
behind it (see figure 1). The group speeds Ṽg1 ≡ dω̃/dκ and
Ṽg2 ≡ dω̃/dq, as well the phase speeds Ṽp1 ≡ ω̃/κ and Ṽp2 ≡
ω̃/q can be readily calculated from the dispersion relations (4)
and (5).

In the long-wave approximation, when κ, κh0/h1, q, qh0/h1�
1, the corresponding group and phase speeds become equal,
Vg1 =Vp1 ≡ c1 and Vg2 = Ṽp2 ≡ c2, we obtain:

c1 =

√
(1−a)(h0/h1)

a+h0/h1
, c2 =

√
(h2/h1)(1−a)(h0/h1)

a(h2/h1)+h0/h1
.

(6)
Substituting these expressions into Eqs. (2) and (3) instead of
c1 and c2, we obtain the formulae for the transformation coeffi-
cients of infinitely long internal waves:

T =
2

1+Ql
, R =

1−Ql

1+Ql
, (7)

where

Ql =

√
h2

h1

a+h0/h1

a(h2/h1)+h0/h1
. (8)

These formulae reduce to Lamb’s formulae (2) and (3) for sur-
face waves expressed in terms of depth ratio, if the density of
the upper layer becomes negligibly small (a→ 0), and the den-
sity interface becomes a free surface.



Figure 2. Transmitted to incident wavenumber ratio against the depth ratio h1/h2 for h0/h1 = 10. Solid lines represent solutions of
equation (10), points are numerical results.

Results of our numerical modelling of the transformation pro-
cess show that in the general case of arbitrary wavelength, the
transmission coefficient T can be well approximated when the
group speeds Vg1 and Vg2 are used in Eq. (2) for T instead of
c1,2. In the meantime, the reflection coefficient R can be satis-
factorily approximated when the phase speeds Vp1 and Vp2 are
used in Eq. (3) instead of c1,2. Notice, that the same results
were obtained for surface wave transformation [4, 6].

After substitution of the corresponding expressions for the
group and phase velocities into (2) and (3), one obtains the
following approximate formulae for the transformation coeffi-
cients:

T =
2

1+Q
, R =

1−κ/q
1+κ/q

, (9)

where
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,

D(α, β, γ, δ) = aγ tanhα+δ tanhβ,

E(α) = 1+α
sech2

α

tanhα
.

The relationship between the wavenumbers q and κ of the trans-
mitted and incident waves can be found from the frequency con-
servation low – wave frequency remains unchanged in any sta-
tionary system. Equating Eqs. (4) and (5), we obtain the tran-
scendental equation, which can be solved numerically by any
appropriate procedure:

κ

q
=

acoth(κh0/h1)+ coth(κ)
acoth(qh0/h1)+ coth(qh2/h1)

. (10)

In the next section we illustrate graphically expressions for the
transformation coefficients (9) and dependence of q/κ on depth
ratio h2/h1. We also present the comparison of the suggested
approximative formulae with the results of direct numerical
simulations for different position of the density interface (py-
cnocline) in two-layer fluid.

Discussion of Results Obtained and Conclusion

With the help of properly adapted simulation code MITgcm we
have performed more than 100 runs to model the transformation
of small-amplitude internal waves on bottom step in two-layer
fluid. For the dimensionless wavenumber of the incident wave
the following three values were taken: κ= {0.1, 1.0, 10.0}. For

each of these wavenumbers we have performed runs for three
values of the depth ratio h0/h1 = {0.1, 1.0, 10.0}; this depth
ratio characterises the relative thicknesses of fluid layer. Then,
the calculations were performed for 20 differen values of the
bottom layer thicknesses h2/h1 varying from 0.01 to 100 (the
logarithmic scale was used). This range of variation of h2/h1
includes both the cases when h2/h1 < 1 and h2/h1 > 1; in other
words this pertains to waves travelling toward the bottom jump
both with the decreasing depth and with the increasing depth.
We kept the depth h1 constant in all calculations.

Figure 2 shows the dependences of wavenumber ratios of the
transmitted and incident waves as functions of depth ratios
h2/h1. Similar to surface waves [4, 6], the wavenumber in-
creases when a wave enters into the shallower layer from the
deep layer and decreases when a wave enters into the deeper
layer from the shallower one. As one can see from figure 2,
the longer is the incident wave, the greater is the change of
its wavenumber after transformation on the bottom step – cf.
black and red lines in figure 2. Notice that a wave with κ = 0.1
can be treated as the infinitely long wave – the corresponding
solid black line for the case κ = 0.1 is indistinguishable from
the dashed line for the case κ→ 0.

Coefficients of transformation are depicted in figure 3 against
the depth ratio h2/h1. These coefficients are non-monotonic
function. In the linear approximation the amplitude of a trans-
mitted internal wave can increase up to twice with respect to
the amplitude of initial wave, if it travels towards the step with
the decreasing total depth. In this case the reflection coefficient
goes to one. other details are clearly seen in figure 3. It is in-
teresting to note that in the case of long wave transformation
with κ = 0.1 both the coefficient of transmission and reflec-
tion asymptotically approach the values which are close to 0.5
when the ratio h2/h1 goes to infinity. This is in a contrast with
the transformation coefficients for long surface waves, where
the transmission coefficient monotonically goes to zero, and the
reflection coefficient goes to one in the same limit (see [4, 6]
for details). Furthermore, the transmission coefficient of long
waves may become even greater than 0.5 when h0/h1 decreases,
that is when the thickness of the upper layer decreases. The
inverse situation occurs when the thickness of the upper layer
increases.

Another interesting finding of our research pertains to the reflec-
tionless transmission of short internal waves travelling from the
shallower domain to the deeper domain (see red line in figure 3
for κ = 10). The reflection coefficient vanishes in this case, and
the transmission coefficient approaches to unity. The transmis-
sion coefficient for the same wavenumber also turns to unity at
some depth ratio h2/h1 < 1. But in this case the reflection co-
efficient is not equal to zero. This means that the amplitude of



Figure 3. Coefficients of transmission (upper frame) and reflection (lower frame) as functions of the depths ratio h2/h1 for the particular
value of the depth ratio upper to lower layers h0/h1 = 10 (solid lines – approximative formulae, points – numerical results)

the transmitted wave remains the same as the amplitude of the
incident wave, but the wavelength becomes different. The same
effect was discovered for surface waves [4, 6].

Thus, we obtained quite satisfactory agreement between the
data of approximate formulae and results of direct numerical
calculations. The approximative formulae describes not quali-
tatively, but even quantitatively the main features of transforma-
tion coefficients for internal waves in two-layer fluid. Suggested
formulae are capable to predict correctly even such specific fea-
tures as the values and positions of local extrema on the curves,
as well as asymptotic values of the coefficients. Some minor
discrepancies between the theoretical and numerical data can
be explained by the approximative character of the suggested
formulae and numerical errors caused by discretisation of the
domain and data processing.
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