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Abstract

Measurements of velocity and the temperature fluctuations have

been performed to determine the budget of q2 (mean turbulence

kinetic energy) and θ2 (temperature variance) in the far wake of

a cylinder. The two budgets show similar physical phenomena

(advection and diffusion) as the source of large scale inhomo-

geneity on the flow centreline. It was noted that the estimates of

the dissipation rates ε and χ of q2 and θ2, respectively, obtained

using a spectral chart method results in a better closure in both

the q2 and θ2 budgets than their isotropic counterparts.

Introduction

The transport equations for both the turbulent kinetic energy, q2

[13] (≡ u2 +v2 +w2), and the temperature variance, θ2 [10], in

plane wake can be approximated to
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U ≡U1 −Uo and T are the mean velocity and temperature, U1

and Uo are the free-stream velocity and the mean velocity de-

flect, u and v are the velocity fluctuations in the streamwise (x)

and the lateral (y) direction and θ and p are the temperature and

pressure fluctuations; ε is the mean turbulent kinetic energy dis-

sipation rate and χ is the mean temperature variance dissipation

rate and are defined as
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where ν and α are the kinematic viscosity and the thermal dif-

fusivity, respectively.

There have been several attempts to measure the various terms

in Eq. 1. In the far wake, Fabrice [8] and Browne et al. [4] have

shown that the budget of q2 on the centreline consists of a gain

of energy, from the contributions of advection and turbulent dif-

fusion, and a loss of energy due to ε. As the distance from the

axis increases, the production arises and balances the dissipa-

tion. It was also noted that the pressure diffusion term is small

compared with the turbulent diffusion of q2. Browne et al. [4]

and Browne and Antonia [1] highlight a strong anisotropy of

both the ε and χ. The evaluation of ratios of velocity deriva-

tives [4] and ratios of temperature derivatives [1] have shown

a large departure from isotropic values. This fact appears to

be a universal feature of shear flows and independent of the

Reynolds number. Recently, Thiesset et al. [12] observed that

the q2-budget in intermediate wake differs from that given in

[4], where ε is balanced by advection only. This difference

could be related to a reorganization or rescaling of the large-

scale structures as they move from the intermediate wake field

to the far wake field [3].

The closure of Eqs. 1 and 2 is a first step towards investigating

the transport equations of (δq)2 (≡ δu2+δv2 +δw2) and (δθ2),
where δα = α(x+ r)−α(x), r is the spatial separation along

x and α = u, v, w and θ. An interpretation of the transport

equations of (δq)2 and (δθ2) is that they represent the energy

and temperature budgets at each scale, which recover Eqs. 1

and 2, respectively, for very large separations r. There have

been several attempts at investigating scale-by-scale (sbs) bud-

gets, either experimentally or numerically, in various flows (e.g.

homogeneous shear flow, centreline of a channel flow [6], cir-

cular jet [5] and intermediate wake flows [12]). In general, the

closure of the budgets was relatively well validated, support-

ing the various assumptions made for deriving the equations. In

these previously cited flows, different physical phenomena are

at play. For example, grid turbulence and intermediate wake are

dominated by the advection of energy, while the major source

of inhomogeneity on the centreline of an axisymmetric jet is

associated with the streamwise decay of turbulent energy with

only a small contribution from the production.

In the present investigation, the budgets of q2 and θ2 are mea-

sured in the far wake field of a two-dimensional circular cylin-

der turbulent wake, with special attention paid to the measure-

ments of ε and χ. Experimental details are given in Sec. II. The

one-point budgets for ε and χ are obtained in Sec III. Sec. IV

examines the effect of the shear on the second and third order

structure functions of velocity and temperature. Finally, con-

clusions are drawn in Sec. V .

Experimental Apparatus

Measurements are carried out in an open circuit wind tunnel

with a 2.4m long test section (0.35m×0.35m). The top wall of

the working section is adjusted to achieve a zero mean pressure

gradient. A circular cylinder of diameter D = 6mm is placed

horizontally, spanning the whole test section. The measure-

ments are carried out across the wake at a location of about

240D downstream of the cylinder. The upstream velocity was

U1 = 3.6ms−1 corresponding to a Reynolds number based on

the cylinder diameter of 1600 and a Taylor microscale Reynolds

number Rλ = 44 at the centerline of the wake.

The probe, sketched is in Fig. 1, consists of six wires, four op-

erating at constant-temperature and two operating at constant

current mode for measuring u at two spatial locations. The four

hot wires, one X-wire and parallel hot wires, are arranged in or-

der to measure one vorticity component. When the cross wire is

in the (x,y) plane, u, v, and ωz are obtained. Rotation through

90o yields u, w and ωy; ωy and ωz are the vorticity fluctuations

in the y and z directions, respectively. The two wires, repre-

sented by h1 and h2 in Fig. 1 and which form the X-wire, are

separated by ∆z = 1.5mm. the two hot parallel wires (h3 and

h4 in Fig. 1) are separated by ∆y = 1.5mm. The separation of
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Figure 1: Schematic arrangement of probe.

parallel cold wires c1 and c2 is about ∆yc = 2mm. The spatial

resolution of this probe was discussed in Zhou & Antonia [14]

All wires are etched from Wollaston Pt − 10%Rh to an ac-

tive length of about 200dw for the hot wires (dw = 2.5µm) and

1000dw for the cold wires (dw = 0.63µm). The output signals

from the constant temperature and constant current circuits are

digitized 12−bit analog-to-digital converter at a sampling fre-

quency close to 2 fK = 1600, where fK = U/2πη is the Kol-

mogorov frequency, after the low-pass filter cutoff frequency

was set to be approximately equal to fK . Each data acquisition

lasts about 50s. The time series of α (≡ u,v,w,θ) are used to

construct temporal increments δα = α(t + dt)−α(t) required

for two-point statistics. The Taylor hypothesis is then invoked

to convert the temporal two-point signal δα into a two-point

spatial signal.

Single Point Budgets of q2 and θ2

Fig 2 and 3 show the distributions of vu2
i and vθ across half-

width wake, respectively. Since only one component of vq2 was

measured, the distribution of vw2 is inferred from our vu2 mea-

surement and the anisotropy ratio vw2/vu2 measured by Fabrice

[8]. Fig 2 shows a fairly general good agreement between the

present distributions of vu2, v3 and vw2 and those of Browne [4].

The smaller amplitude of vw2 relatively to the other terms un-

derlined a stronger lateral transport of u2 and v2 than for w2 [9].

The present distribution of vθ collapses well on those of both [4]

and [8]. Not shown here, the data of [4, 1] at x/D = 420 also

show good collapse with the present measurements, suggest-
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Figure 2: Distributions across the wake half-width of the triple

velocity products that appear in the diffusion of energy due to

lateral velocity fluctuations. ◦, vu2 ; �, v3 ; △, vw2. (Open

symbols: present data ; black symbols: Browne and al [4] ; red

symbols with dashed line: Fabrice [8]). Note that a upward shift

is applied to help visibility.
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Figure 3: Distributions of lateral heat flux vθ across the wake

half-width. (Open symbols: present data ; black symbols:

Browne and al [4] ; red symbols with dashed line: Fabrice [8])

ing that self-preservation is reached at the present streamwise

location of measurements. This can then be exploited to esti-

mate the gradient ∂q2/∂x (Eq. 1) and ∂θ2/∂x (Eq. 2) using the

streamwise variation of lo, Uo and To. Under self-preservation,

the following relations hold

lo
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d
)1/2 (5)

Uo

U1
= 1.3(

x−x0

d
)−1/2 (6)
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where lo is the wake half width, Uo and T0 are the maximum ve-

locity deflect and mean temperature, T1 and U1 are the ambiance

temperature and the free-stream velocity. The virtual origin x0

is estimated to be -112. The data for q2/U2
o and θ2/T 2

o are fitted

with curves based on a cubic spline least-squares and numerical

differentiation is applied on thess fits yielding dhq(η)/dη [11]

and dhθ(y/lo)/dη ( η= y/lo), respectively. U2
o hq and T 2

o hθ are

self-similar forms for q2 and θ2. The lateral derivation of U , T

, vθ2 and vq2 are obtained in a similar manner.
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Figure 4: Measured budget of q2. ◦, advection; �, production;

+, q2 diffusion; ▽, εiso, △, ε from the spectral chart method and

, pressure diffusion (by difference using εiso) ; , pressure

diffusion (by difference using ε from the spectral chart method).

The maximum velocity defect, Uo, and the half-width wake, lo,

are used for the normalisation.

Fig. 4 and 5 show all terms of Eq. 1 and 2 normalized by lo/U3
o .

The term ε is estimated using two methods: the first one consists

of assuming isotropy i.e. ε = εiso = 15ν(∂u/∂x)2, the second

uses a spectral chart method [7]. The rate χ is calculated using

both the isotropic relation (χiso = 3ν(∂θ/∂x)2 and Eq. 4. The

pressure diffusion term obtained from εiso is small compared to

the turbulent diffusion of q2, and does not satisfy the integral

constraint since its integration over the wake width is not 0.

On the other hand, the pressure diffusion term obtained using

estimate ε from the spectral chart method is consistent with the

integral constraint. Similar to εiso, the use of χiso do not yield

consistent results since it fails to produce a closed budget of

θ2. Note that the error between ε and εiso is about 20% on

the centerline, while it is nearly 80% between χ and χiso. The

temperature dissipation appears to be more anisotropy than the

kinetic energy dissipation.

Although not shown here, the budgets presented in [4] and [1],

are in a qualitatively good agreement with those presented in

Figures Fig. 4 and 5. The turbulent diffusion diffusion of q2 is

quantitatively similar to the turbulent diffusion of θ2 across the

wake. Near the wake axis, the transport of q2 through the mean

velocity is nearly twice the transport of θ2.

Two Point Statistics

We now look at two-point statistics as a first step toward a scale

by scale analysis of the energy transfer between scales. The

second- and third-order structure functions of q2 and θ2 may be

written as

fq =
(δq)2

q2
and gq =−(δu)(δq)2

31/2Rλ

q2
3/2

(8)

fθ =
(δθ)2

θ2
and gθ =−(δu)(δθ)2

31/2Pe

(u2
1/2

θ2)
. (9)

fq, fθ, gq and gθ measured on the centerline (y/lo = 0), and

shown in Figures Fig. 4 and 5, indicate that the dissipation rates

ε or χ are balanced by advection and turbulent diffusion. At the

locations y/lo = 0.25 and y/lo = 1, production and the diffusion

term are maximum and minimum, respectively. Measured dis-

tributions of fq and fθ are shown Figs. 6(a) and 6(b) function of

r/λq and r/λθ, respectively. There is a fairly good collapse of
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Figure 5: Measured budget of θ2. ◦, advection; �, production;

+, θ2 diffusion; ▽, isotropic dissipation; N, full dissipation and

△, optimum dissipation. The maximum velocity defect, Uo, and

the half-width wake, lo, are used for the normalisation.
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Figure 6: (a) fq (≡ (δq)2/q2) versus r/λq and (b) fθ (≡ δθ2/θ2)

versus r/λθ across the wake.

fq over practically the entire the scale separation range. The dis-

tributions of fθ on the other hand present a weaker collapse, in

particular in the range 2 ≤ r/λθ ≤ 10. Notice too, the overshoot

in fθ at r/λθ = 20, while the asymptotic value of 2 for fq is

approached monotonically. The overshoot implies the tempera-

ture is more sensible to the presence of large-scale organisation

that the velocity or kinetic energy. The differences between fq



and fθ have been already observed in different turbulence flows.

For example, Antonia et al. have shown that fq and fθ differ in

grid generated turbulence [2].

While one may consider that, overall, fq and fθ present good

collapses across the wake, the third order structure functions

do not show such features as seen in Fig. 7(a) and 7(b) which

show gq and gθ function of r/λq and r/λθ, respectively. Both

gq and gθ increase with y. Further analysis is being carried out

to investigate the reason for this behaviour.
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Figure 7: (a) gq (≡ −δu(δq)231/2Rλq
/q2

3/2
) versus r/λq and

(b) gθ (≡ −δu(δθ2)31/2Rλq
/(u2

1/3
θ2)) versus r/λθ across the

wake

Conclusions

Hot and cold wire measurements were carried out in a far field

of a turbulent wake of a circular cylinder, with the aim to study

the single-point budget of q2 and θ2. The measurements which

were undertaken at the downstream streamwise location x/D =
240 showed that the first and second order statistics compared

well with those of [4] and [1] at x/D = 240 and 420, suggesting

that self-preservation is well approximated in the far field.

The results indicate that local isotropy is not satisfied. For ex-

ample, it is found that using εiso and χiso failed to provide closed

budgets of q2 and θ2.

Two-points analysis showed that while the normalised second

order structure functions fq and fθ evolve in self-similar manner

across the wake, gq and gθ show variations across the wake.
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