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Abstract

The paper presents an approach for flutter prediction using
a combination of full-order computational aeroelastic (CAE)
techniques and reduced-order modeling (ROM) methods. The
aeroelastic equations of motion are resolved by using CAE to
obtain time-domain aeroelastic responses, upon which ROM is
applied to obtain an aeroelastic reduced-order model in discrete-
time, state-space format. The resulting closed-loop aeroelastic
model is thus analysed for Hopf bifurcation to predict the flut-
ter boundaries. The present approach predicts flutter boundaries
much faster than aeroelasticity simulation, lending it a practical
engineering tool. For application and verification of the method,
the benchmark transonic aeroelastic of AGARD 445.6 wing will
be considered. Results show that the present approach predicts
accuately the flutter boundaries.

Introduction

Aerodynamic flutter, an aeroelastic phenomenon caused by
closed-loop interaction between aerodynamic and structural dy-
namic, constrains and even poses danger to the operation of air-
craft. Flutter prediction is one important process in aircraft de-
sign. As an alternative to flight tests, computational aeroelastic-
ity (CAE) has become a reliable tool for flutter analysis. Both
linear unsteady aerodynamics and nonlinear high-level CFD
methods have been developed and applied in CAE. When aero-
dynamic nonlinearities such as transonic flutter, shock waves,
and high-angle-of-attack problem, the latter are the only meth-
ods capable of dealing with the problems.

Because of the high computational cost incurred by full-order
CAE computation, its use for mapping out the flutter bound-
aries in the entire flight envelop will lead to excessively long
turnaround time. To this connection reduced-order modeling
(ROM) techniques have been applied in aeroelastic analysis.
ROM can reduce the computational time by several orders of
magnitude. In general, a reduced-order aerodynamic model is
obtained and deployed in lieu of the full-order unsteady flow
solver. Generation of ROM involves two functional steps –
generation of training data, and calculation of reduced-order
model. Both experimental results and computational results can
be used as ROM training data. The system is subjected to pre-
scribed perturbation[1, 2, 4, 9, 10], and aeroelastic responses
are measured and taken as ROM training data. A number of dif-
ferent techniques have been developed for calulating reduced-
order models. These include Eigenvalue (Modal) Truncation,
Balanced Model Reduction, Karhunen-Loeve or Singular Value
Decomposition, System Identification methods, Fourier Series
methods, and Hybrid techniques. Dowell and Hall [3] presents
a comprehensive review of recent works. Noor [8] gives some
early examples of model reduction techniques.

In the present work CFD results are used as ROM training
data. Full-order CAE simulations are performed to compute
the unsteady flows of the non-aerodynamically loaded system

in response to a prescribed perturbation. The staggered phase-
modulation signal is applied to prescribe the generalised dis-
placement. Each one of the structural modes used is excited at
about its natural frequency and with a phase lag with the preced-
ing mode. The staggered inputs method[6] allows training data
to be computed in one single run of CAE computation, achiev-
ing greater time saving. The present reduced-order modeling
technique is based on the Hammerstein model and correlation
method[7]. While the aerodynamic model can be identified by
ROM, the structural model is identified independently by using
finite-element analysis. The computed aerodynamic model and
structure model are coupled to form the closed-loop aeroelastic
model, to which eigen-analysis can be applied to determine the
flutter boundaries.

While the CAE techniques and ROM method used in this work
will be briefly dicussed herein, the main focus of this paper
will be on verifying the present numerical scheme. Verification
study was performed using the AGARD 445.6 wing. The com-
putational aeroelastic results obtained were compared against
experimental data. The Mach numbers considered correspond
to those in the experiments. Computations were performed for
flow conditions at two different angles of attack α = 0◦ and 4◦.

Modeling of Flutter Dynamics

Aerodynamic flutter is a closed-loop interaction between air
flow and flexible structure. The air movement exerts aerody-
namic forces on the structure, which reacts by deforming. This
deformation results in a time-varying boundary of the flow do-
main and, thus, a feedback mechanism between the structural
dynamics and aerodynamics. Figure 1 depicts the schematic of
a closed-loop aeroelastic system. The aeroelastic equations of
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Figure 1. Flutter dynamic system.

motion can be expressed in modal coordinates as

η̈i +2ζiωiη̇i +ω2
i ηi = fi, i = 1, ...,N (1)

where η is the structure modal or generalized displacement, f
the generalized aerodynamic forces, N the number of structural
modes, and ζ and ω the damping factor and natural frequency,
respectively.

The aerodynamic force vector FFF exerted by the air movement is
a nonlinear function of the fluid state vector UUU and the kinematic



boundary conditions as defined by the displacement vector ξξξ of
the flow domain:

FFF = FFF
(

UUU ,ξξξ, ξ̇ξξ
)

, (2)

whereas the fluid state vector UUU =(ρ,ρvvv,ρE), of density ρ, fluid
momentum ρvvv and total energy ρE, is determined by the solu-
tion of the flow governing equation. For this study, the Euler
equation is employed for modeling three-dimensional inviscid
unsteady flow, which can be expressed in integral form as

∂
∂t

Z

Ω(t)
UUU dΩ+

Z

∂Ω(t)
F ·nnndσ = 0, (3)

where F is the flux vector, Ω(t) is the flow domain with bound-
ary ∂Ω(t), and nnn denotes the outward normal vector on the
boundary. The flow domain and its boundary are time-varying
due to structural deformation. The relation between ξξξ and ηηη is
determined by a mapping Φ : ξξξ = Φηηη, called the fluid-structure
coupling, which transforms modal displacements into flow do-
main displacements. Hence, one can write:

Ω(t) = Ω(ηηη(t)), ∂Ω(t) = ∂Ω(ηηη(t)). (4)

The numerical methods employed for solving the system of
equations (2) – (4) consist of a Cartesian grid-based Euler
solver using a time-accurate second-order implicit scheme and
multigrid procedure to accelerate convergence, and an algebraic
transformation for the fluid-structure coupling operator [5]

Equations (2) – (4) describe the aeroelastic response as an N-
input, N-output system, with the input being the modal dis-
placements ηηη, and output being the aerodynamic forces FFF in
modal coordinates. Solution is obtained at a given free-stream
Mach number M∞. The generalized aerodynamic force vector
fff acting on the structure is related to FFF by

fff = αV 2FFF (5)

where α is a constant depending on the dimensions and mass of
the wing, and V is the speed index given by

V =
V∞

bsωα
√

µ̄
, (6)

where V∞ is the free-stream velocity, bs is the semi-chord
length, ωα is the natural frequency of wing in first uncoupled
torsion mode, and µ̄ is the wing-air mass ratio. The smallest
value V f of V such that the closed-loop is unstable is called the
flutter speed index, and the frequency ω f of oscillation is the
flutter frequency. The traditional definition of flutter boundaries
are thus the graphs V f (M∞) and ω f (M∞) [11].

Hammerstein Reduced-Order Model for Flutter Dynamics

The above dynamical system of aeroelastic response has no an-
alytical model, and flutter analysis by full-order simulation is
computationally expensive. A faster, system-theoretic method
consists in obtaining a reduced-order model of this system.
Since aerodynamic response can be regarded as weakly nonlin-
ear under small modal displacement, the Hammerstein model is
a suitable choice for ROM.

The ROM technique used in the paper is based on the
Correlation Method for Hammerstein System Identification
(CMHSI)[7]. Reduced-order aerodynamic model is obtained by
identification of the Hammerstein model parameters using input
and output data computed in full-order CAE computations. The
Hammerstein model is composed of a static nonlinearity N [·]

followed by a linear block represented by its impulse response
function h(τ), as shown in figure 2, where the nonlinearity N [·]
is assumed to take an odd-polynomial form,

y(t) = h(τ)∗ x(t)
= h(τ)∗N [u(t)]

= h(τ)∗ [γ1u(t)+ γ2u3(t)+ · · ·+ γpu2p+1(t)]. (7)

N[⋅] h[τ]
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Figure 2. Hammerstein model for aerodynamic response.

Determination of Flutter Boundary via Closed-Loop Eigen-
value Analysis

By adopting the ROM approach, the flutter dynamics of figure 1
is approximated by a closed loop formed by the Hammerstein
ROM and the structure model. As aerodynamic is parametrized
by free-stream velocity and attack angle, a ROM is obtained
for each flow condition. Thus, at each Mach number M and
attack angle α, an (M,α,V f )-parametrized closed-loop model
can be constructed. Here, the linear structural dynamics are
represented by their transfer-function matrix Gs(s).

For a fixed flow condition defined by M and α, the onset of
flutter corresponds to the appearance (if any) of a limit cycle
due to bifurcation as the remaining parameter, the speed index
V f , varies. To determine the condition of limit cylce, the Hopf
bifurcation theorem states that:

Theorem 1. For a one-parameter family of nonlinear differen-
tial equations ẋ = fµ(x), there exists a limit cycle for µ > µ0 if a
pair of eigenvalues of the linearized equation at its equilibrium
crosses the imaginary axis from the left-half complex plane to
the right-half.
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Figure 3. Linearized closed-loop model of flutter dynamics.

In the context of the current study, the family of nonlinear differ-
ential equations is that of the reduced-order flutter closed loop
parametrized by V f . It is important to note that, once the ROM
is identified, the closed loop is analytical. Moreover, at zero
equilibrium (u = 0,y = 0), the linearized equation is simply that
of the closed loop with only the linear part of NM , i.e.

x(t) = γ1u(t), (8)

as shown in figure 3. Hence, flutter boundary determination
amounts to calculating V f at which a first pair of eigenvalues
crosses the imaginary axis. This can be easily achieved via line
search. The crossing frequency is thus the flutter frequency.



Results and Discussion

Computed flutter characteristics of the AGARD 445.6 wing are
presented here. The AGARD 445.6 wing was flutter tested in
the Transonic Dynamics Tunnel, at Mach numbers from 0.4 to
1.14 at zero-degree angle of attack. Experimental results[11]
from this test have been widely used for computational aeroelas-
tic benchmarking. The AGARD wing planform has a quarter-
chord sweep angle of 45◦, an aspect ratio of 1.65, a taper ratio
of 0.66, and a symmetric airfoil. The wing model and struc-
tural model used in the present work are depicted in figure 4.
Five dominant structural modes of the wing, figure 5, are used.
Their natural frequencies are

ωi = (60.32, 239.8, 303.8, 575.1, 742.0) rad/sec.

Mode 2 is the first uncoupled torsion mode. That is, ωα =
239.8 rad/sec. The structural damping is assumed to be zero,
which corresponds to the ’weakened’ 2.5-foot panel-span model
described in Yates[11]. In order to compare with experimental
data, four Mach numbers are investigated:

M∞ = (0.5, 0.678, 0.90, 0.96).
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Figure 4. Numerical models and computational grids for
AGARD wing configuration.

(a) Mode 1, f1 = 9.60Hz

(b) Mode 2, f2 = 38.17Hz

(c) Mode 3, f3 = 48.35Hz

(d) Mode 4, f4 = 91.54Hz

(e) Mode 5, f5 = 118.10Hz

Figure 5. Modal shapes and frequencies of the AGARD 445.6
wing (weakened model).

Determination of flutter boundaries using CAE simulation usu-
ally follows the bisection approach. Computations are per-
formed at different speed indices at a fixed Mach number and at-
tack angle. The aeroelastic response in the form of time-varying
generalised variables is computed, from which the damping ra-
tio is computed using the logorithmic decrement method. A
positive damping ratio signifies stable condition, while nega-
tive damping ratio indicates unstable condition. As an example
of stable flutter response, the computed generalised displace-
ment at Mach number M∞ = 0.90 at sub-critical speed index
V =0.2 is shown in figure 6. The system exhibits damped oscil-
lation that the generalised displacement decays gradually and
progressively after an initial disturbance. As the speed index
is increased to V =0.32, the generalised displacement exhibits
slightly undamped oscillation. It can be determined from these
results that the flutter speed index V f for M∞ = 0.90 is at about
0.32.

In the present ROM-based approach, a Hammerstein reduced-
order aerodynamic model is first computed using aeroelastic re-
sponses obtained by full-order CAE simulation. In this com-
putation the generalised displacement is prescribed by a phase-
modulation function

a(t) = Asin(ωct − ∆ω
ωs

sin(ωst)) , (9)

where A is the amplitude, ωc the central frequency, ωs the sweep
ferquency, and ∆ω the frequency semi-band. The parameters of
this phase modulation signal are chosen in such a way that the
signal covers adequately the required range for the five natural
frequencies of the wing. The prescribed generalised displace-
ment and computed generalized aerodynamic forces (GAFs) for
a typical case are shown in figure 7. Following the CHMSI
method and stability analysis, we obtained the critical speed in-
dices and critical frequencies for the Mach numbers considered.
The computed flutter boundaries is compared with experimen-
tal results[11] in figure 8. The computational results are in good
agreement with experimental results across the Mach number
range considered.

The CMHSI method was also exercised to investigate the flutter
behavior of the AGARD 445.6 wing at angle of attack α = 4◦.
The solution, shown in figure 7, shows that the critical speed
index is reduced slightly as the attack angle is increased from
α = 0◦ to 4◦. This is probably due to an increase in aerody-
namic forces as attack angle increases that triggers aeroelastic
instability to occur at a lower speed index.

Conclusions

A modeling and simulation framework for flutter analysis has
been developed using a combination of full-order computational
aeroelasticity techniques and reduced-order modeling methods.
Flutter analyses were performed for the AGARD 445.6 wing as
part of the validation process. Results showed that the ROM-
based predictions matched the experimental data well. The
computed flutter speed indices and flutter frequencies showed
very satisfactory results.
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