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Abstract A
In this paper a previously unreported stability charasteriof ’ J

coupled natural convection boundary layers is investijatée
flow is examined numerically here with simulations of twoeaad;]
cent two—dimensional rectangular cavities joined along)\eT-
tical wall which has an infinite conductivity. The outer veat
walls are isothermal, with one ‘hot’ wall and one ‘cold’ watd
all horizontal walls are adiabatic. Heat is transfered leemthe
cavities through the conducting wall so a natural conveati|
forms in both cavities. The boundary layer formed on the’hot H
cavity side of the conducting plate flows downwards, whik th
on the ‘cold’ cavity side flows upwards, forming a conjugate
boundary layer system.

10° at a Prandtl number of 7.5. The interaction between the
boundary layers that form on either side of the vertical con-
ducting wall is of primary interest in this study. An uncoegl
laminar natural convection boundary layer is known to be-con Y
vectively unstable above Ra10® at Pr= 7.5 whereas the tran-
sition to absolute instability is known to occur above-Ra0M.

In the present study the coupled system is shown to be abso-
lutely unstable above Ra 1.2 x 1019, with a weak dependence

on cavity aspect ratio. Perturbations form in the boundaygils

on both sides of the conducting wall and grow with the bound-
ary layer. This flow configuration is of fundamental impodan

Simulations have been conducted over the range-Ba 18 x \J

- W —p

Figure 1: Configuration studied, with contours of mean tempe
ature illustrated at Re: 7 x 10° and A = 2. Arrows indicate
flow direction inside the cavities.

to many common heat and mass transfer problems. pr Ra . N A
[1] 6 1° <Ra<10® 0-2 0.33
Introduction [3] 2700-7000 16<Ra<10° 0-1 1
) _ , , [9] 6 10° < Ra< 100 0-4 4
Natural convection flows occur widely and are of interest in [12] 0.71 16 < Ra< 16 0-4 05-15
many engineering problems including solar collectors learc [13] 7 L1 o . A .

reactors, electronic equipment and HVAC problems. Impdove
understanding of such flows may lead to better prediction and
optimisation of heat transfer. The flow configuration coaséd
here is that which occurs on either side of a conducting wall
with a temperature difference across the wall. The probem i At a Rayleigh number Raa laminar natural convection bound-
investigated via a dual cavity geometry, illustrated in fega. ary layer becomes convectively unstable, meaning thatéfra p
The left and right outer walls are held at fixed ‘hot’ and ‘cold  turbation of frequencyc is imposed on the flow, the signal will
temperatures respectively. The top and bottom walls a-adi  pe amplified by the boundary layer. Once the exciting peaturb
batic and the central vertical wall has an infinite condutstiv tion ceases the oscillations will decay back to the steagg-ba
Natural convection boundary layers form on the verticallsval flow. The exact value of Radepends on flow configuration de-
which flow onto the horizontal walls forming intrusions. The tails such as background stratification and wall boundary co

Table 1: Previous partitioned cavity studies.

direction of flow circulation is indicated in figure 1 by arrew dition (isoflux or isothermal) but is generally above Ra(®

In the high Rayleigh number flow (Ra 10°) considered here, for Pr= 7[5, 2]. On an infinite vertical plate in an unstrati-
the core of the cavities are nearly linearly stratified aredttbat fied domain, Ra= 2.4 x 1P [8]. The critical Rayleigh number
transfer occurs via a primarily convective mechanism [@je T for convective instability of the boundary layers in isathal
flow behavior depends on the Rayleigh number, Prandtl number cavity flow is Ra~ 10° for Pr= 7.5 [2]. At a higher Rayleigh
and cavity aspect ratid = H /W. number, Ra > Ra, the boundary layer becomes absolutely un-

stable. Here any oscillations will persist and be self Sostg
even if the initial exciting perturbation ceases.;fRaknown to
be greater than 48 for natural convection boundary layers.

Earlier studies have highlighted the affect that partitiealls
have on mean heat transfer characteristics. Typicallyahelts
are correlated with a Nusselt number relation of the form~Nu
Ra'/4(N+1)~" wheren is a constant coefficient ard is the Convectively unstable systems can become absolutelyhiasta
number of partition walls [1, 3, 9, 13, 12]. The parametercepa  if there is a reinforcing feedback mechanism. An example of
covered by these studies is given in table 1. The transiant st such a mechanism is the flow in very high aspect ratio cavities
up characteristics of the partitioned cavity were examiimed where the horizontal walls are short and the two verticalswal
[13] but no unsteadiness was reported in the fully developed are more directly connected. A perturbation can grow alomeg o
flow. vertical boundary layer, then be advected horizontallpulh



the top or bottom intrusions onto the opposite vertical wall
where it is further amplified causing the cavity flow to bifate.
For a high aspect ratio cavity Elder [4] found experimestall
that travelling waves appeared at R&.6 x 10° with Pr=7
andA = 10— 30. Using numerical simulations Le Quere [11]
found the transition to unsteadiness occured atRax 10°
with Pr=7 andA = 10.

In a conjugate boundary layer, a feedback mechanism exists
through the temperature field across the conducting plate. |
this study it is shown that this coupling causes the bounidgry

ers on either side of the conducting plate to become abs$plute
unstable at a lower Rayleigh number than if the conductingy wa
was isothermal. We use direct numerical simulations toteoca
the critical Rayleigh number for this flow configuration, ésv
tigate the mechanisms which drive this instability and tfiece

this has on cavity heat transfer characteristics.

Numerical formulation

The two-dimensional Navier-Stokes equations for incorspre
ible flow with the Oberbeck-Boussinesq approximation for
buoyancy are,

ou;
Y
ou  ouu) _ op Pr u
ot 0xj 0x; Ra/? 0Xj0X;] ¢
@+ oujg) 1 d%
ot 0x;  Ral/20xox;’

where Pr is the Prandtl number, the Reynolds number is defined
as Re=U*H /v and the Rayleigh number is RagBA8H?3 /va.

v anda are the kinematic viscosity and thermal diffusivity of
the fluid. The velocityy;), temperaturef]), pressureR), time

(T) and length X;) are made non-dimensional es= U; /U*,

0= (0—-6/)/A8, p=P/pU*?, t =TU*/H and x = X;/H
respectively. AB = By — B¢ is the temperature difference be-
tween the hot and cold walls and the reference temperature
6r = 0.5(6y + 6¢). The characteristic velocity is obtained from
U* ~ kRal/2 /H [10]. H is the height of the cavity. The hori-
zontal widthW does not appear in the equations.

The discretised governing equations were solved in finite vo
ume form on a non-staggered Cartesian grid. The spatiatderi
tives were discretised using second order central finiterdif
ences except for the advective terms which are discretised u
ing the third-order accurate QUICK scheme [7]. The advectiv
terms were advanced in time using the second order Adams—
Bashforth scheme while the viscous terms were advanced us-
ing the Crank—Nicolson scheme. The system of equations was
solved with theBICGSTAB solver with a Multi-grid Jacobi pre-
conditioner.

We have performed a series of simulations over the range
Ra= 0.6— 1.8 x 10'0 at a Prandtl number of P 7.5 and with

A =1 andA = 2. Grid independent solutions have been ob-
tained at Ra= 1.4 x 1019 with a grid size ofAx = 0.00005 and

Ay = 0.001 and a time step dft = 7 x 10~°. The grid is uni-
form in the vertical Y) direction and has 0.5-1% linear stretch-
ing in the horizontalX) direction givingny = 1029 andchy = 776
computational nodes &= 2 andny = 1032 atA=1. The same
grid is used for all other simulations.

An initial simulation was performed at Ra 1.2 x 10 with

the initial condition being a uniform temperature ¢f= 0

with zero initial velocity. The simulation was continuedtiin

the flow reached full development and statistics are comgkrg
Subsequent simulations at other Rayleigh numbers have been
restarted from this fully developed flow field.

Results

The development of the flow from an initigl= 0 condition is
given in figure 2 for Ra= 1.2 x 1010 andA = 2. In this figure
@is plotted with time at a location on the bottom left side af th
conducting wall. Fot < 3 the boundary layers form on the hot
and cold walls and flow onto the horizontal walls in the same
manner described for isothermal cavity flow [10]. tAt 3 the
horizontal intrusions hit the vertical conducting wall amefin

to fill up the interior of the cavities. Bly= 70 the cavity is strat-
ified, but does not approach its final mean value uritil300.
While the cavity is unstratified, ovér~ 3— 30, waves are gen-
erated by a hydraulic jump type mechanism in the downstream
corners of the isothermal walls where the vertical boundary

ers flow into the horizontal intrusions. These waves profaga
across the cavity and along the conducting wall.

All the simulations in this study are well above Ra 1%, so

the boundary layers are convectively unstable to wavesfréth
quencies in the rangh (y) — f2(y), wheref; and f, vary with
height or local Rayleigh number. The exact valuesfpfind

fo are not known for the dual cavity or single cavity problem.
Any perturbations to the boundary layers on both isothermal
and conducting walls will be amplified if their frequencieg a
within this range.

Att =30, the perturbations from the corners have ceased but the
oscillations illustrated in figure 2 are self-sustainingl aon-
tinue to grow on the conducting wall.
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Figure 2: Time trace ofp for Ra= 1.2 x 1010 andA = 2 at

y = 0.1 andAx = 0.005 left of the conducting wall.

The results over Re: 0.6 — 1.0 x 10*°, do not have this be-
havior. Regardless of any additional perturbations agpice
the system, the oscillations in the conducting boundargray
eventually dissipate and a steady flow field is obtained. This
indicates that the flow becomes absolutely unstable between
Ray = 1.0 — 1.2 x 10*° and that below Ra= 1.0 x 10° the
boundary layers are only convectively unstable. Subsdquen
tests atA = 1 show the critical Rayleigh number is slightly
higher at this aspect ratio with Ra= 1.2 — 1.4 x 109, At this
stage itis not clear why the flow is more stable at a higheraspe
ratio.

In figure 2, overt = 70— 250, it is clear there are two fre-
guencies of oscillation present, a high frequency wave with
period oft = 1.33 and a low frequency wave with a period
of t &~ 14. The high frequency signal is observed in all the
simulations performed here and has a normalised frequency,
f* = fov1/3/(gBAB)2/3 = 0.0142. The wave velocity By =
0.23U*, which isUy, ~ 1.2V, whereVy, is the maximum veloc-



ity in the boundary layer, inline with results in [2]. Afte= 300

the low frequency wave has dissipated significantly. Simila
low frequency waves are observed when the Rayleigh number
is suddenly changed in the simulations which are restarted f

the fully developed Ra= 1.2 x 1010 solution. This suggests
the low frequency wave relates to a start-up disturbanch wit
a period governed by the circulation time of the cavity which
is approximately(2H +W) /Uy, ~ 15.4. The period of the low
frequency waves in th& = 1 simulations ig ~ 30.

Time traces ofpand the velocity components at other locations
around the cavity (omitted here for brevity) show that thghhi
frequency waves do not circulate around the cavity but ae di
sipated in the horizontal intrusions. The high frequencyesa

at the conducting plate persist and so it may be hypothesised !

that they are driven by some other mechanism. Examining the
interaction of the waves across the conducting plate ikt

a potential mechanism. In figure 3 the temperature pertiorat

is shown on both sides of the plate and directly on the plate at
timet =t; (black lines) and a short time latertat t; (red lines).
From halfway up the vertical plate, the waves on each sidesof t
plate travel in the direction of flow and are strongly amptifie
The temperature perturbation is apparently conductedigffiro
the plate to the boundary layer on the opposing side. On this
opposite side, or equivalently at the upstream ends of tte pl
the perturbations conducted through the wall are much darge
than those in the boundary layer. Here the waves flow against
the mean flow in the boundary layer as illustrated by the arow
in the inset log plot in figure 3. These waves are an illustra-
tion of the direct coupling between the two boundary layed a

a possible feedback mechanism by which the system becomes
absolutely unstable. An initial perturbation on one sidehef
plate would be amplified along one boundary layer, conducted
through the plate, and then be amplified in the opposing direc
tion in the other cavity. The perturbation will continualily-
crease in amplitude until ultimately the growth of the waires
the system are limited by dissipation in the boundary layer.

An interesting additional test that was performed was togmim
ically instantly ‘turn off’ the conduction though the plased
replace the temperature on the plate with the local mean tem-
perature. This has the effect of eliminating communicabien
tween the boundary layers. The waves then dissipate and the
flow eventually reaches a steady state solution.
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Figure 3:¢ at Ra= 1.4 x 10'% andA = 2, given at three hori-
zontal locationsxy at the conducting platey = xy —0.002 just

to the left of the plate ang = xy+0.002 just to the right of the
plate. The data is plotted against vertical location andemeed

at two time pointst; andt, =t1 + 0.07 to show progression of
the waves in the boundary layer. The inset plot is a log plot of
the same data.

Figure 4: (¢¢) at Ra= 1.4 x 10'° and A = 2 with distance
from the conducting wall in the right cavity.

The growth of the temperature perturbations along the attadu
ing plate boundary layers is illustrated in figure 4 whépey')

is plotted with distance from the conducting wall in the tigh
cavity. At the upstream end, for< 0.4, (¢g¢f) peaks at the
wall, evidence of the perturbation transmitted throughptia¢e.

At y > 0.4 the temperature fluctuation peaks in the boundary
layer.

The coupling between the boundary layers across the plate is
also clearly illustrated by the the transport equation liertem-
perature variancép ¢f) which is given as,
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The convection, production, dissipation and viscous diffo
balance terms are labelléd P, D andV respectively. The tur-
bulent diffusion terms are neglected from the above balasce
they are negligibly small in this flow. The balance terms are
plotted in figure 5 &-b) illustrating how the perturbation is dif-
fused through the conducting plate from the downstreanh hig
amplitude end of the boundary layer to the upstream, low ampl
tude end of the other boundary layer. YAt 0.2, the upstream
end of the right side boundary layer, diffusion dominatehwi
maximum value adjacent to the conducting plate, blancetidy t
dissipation term. Production is negligible. = 0.8, the pro-
duction term dominates and is much greater than the diffusio
of the perturbation through the conducting wall.

The turbulent kinetic energy balance is not shown for byevit
here but we can report that the velocity perturbation isedriv
by buoyancy across the height of the plate. Shear produigtion
negligible at the upstream ends of the plate and slightlgidis
pative at the downstream ends. This is typical of high Ptandt
number natural convection boundary layers [5].

The mean heat transfer across the cavity is illustrated indig
6 where the Nusselt number is plotted normalised b/ Rahe
high Rayleigh number scaling relation given in [10]. Nishira
et al. [9] found Nuy = 0.297Ra&/4(N + 1)~ with experi-
ments and simulations over the rangé ¥0Ra < 10'° where
Nuy = QH/aAT. Our results are obtained using Nu=
d@/dx|x—0. With one partition N = 1), the constant ob-
tained from Nishimuraet al. is Nuy /Ral/*4 = 0.148 where
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Figure 5: Budget for the temperature variance with distdnma the conducting plate in right cavity at y=0.8) and y=0.8 ) for
Ra= 1.4 x 10'0 with A = 2. Legend for budgets is given im)(with reference to equation (1) and the thick black line gimeean

vertical velocity at those locations.

as the present simulations are approximately 5% higher at
Nuy /Ra/* = 0.155. There does not appear to be a large jump
in the heat transfer between the steady/unsteady regimes be

tween Ra=1.0—1.2x 101%forA=2and Ra= 1.2— 1.4 x 100
forA=1.

0.1
* * g g o o

A
©
Xo.15 e
=
Z

0.14' ! !

'%e+09 le+10 R 1.5e+10 2e+1(
a

Figure 6: Nusselt number results presented Aoe 2 (dia-

monds) andA = 1 (circles). Solid line indicates the constant

from [9] with N = 1.

Conclusions

The natural convection boundary layer which is formed on ei-

ther side of a conducting plate in a square cavity is shown to
become absolutely unstable at a Rayleigh number lower than
would occur if the plate was isothermal. The evidence prteskn

suggestes that the instability is a result of the thermaplting

between the natural convection boundary layers on eitloer si
of the plate which provides a feedback mechanism sufficient
to produce an absolutely unstable system. The criticaldglyl

number for absolute instability is betweenR4.0— 1.2 x 1010

for A=2 and Ra= 1.2 — 1.4 x 109 for A= 1. The bifurcation

is manifested as a single mode of oscillation with= 0.0142.

The mean heat transfer is well predicted by the empiricaksor

lation of Nishimuraet al. [9].
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