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Abstract

In this paper a previously unreported stability characteristic of
coupled natural convection boundary layers is investigated. The
flow is examined numerically here with simulations of two adja-
cent two–dimensional rectangular cavities joined along one ver-
tical wall which has an infinite conductivity. The outer vertical
walls are isothermal, with one ‘hot’ wall and one ‘cold’ walland
all horizontal walls are adiabatic. Heat is transfered between the
cavities through the conducting wall so a natural convection cell
forms in both cavities. The boundary layer formed on the ’hot’
cavity side of the conducting plate flows downwards, while that
on the ‘cold’ cavity side flows upwards, forming a conjugate
boundary layer system.

Simulations have been conducted over the range Ra= 6−18×
109 at a Prandtl number of 7.5. The interaction between the
boundary layers that form on either side of the vertical con-
ducting wall is of primary interest in this study. An uncoupled
laminar natural convection boundary layer is known to be con-
vectively unstable above Ra≈ 106 at Pr= 7.5 whereas the tran-
sition to absolute instability is known to occur above Ra≈ 1011.
In the present study the coupled system is shown to be abso-
lutely unstable above Ra= 1.2×1010, with a weak dependence
on cavity aspect ratio. Perturbations form in the boundary layers
on both sides of the conducting wall and grow with the bound-
ary layer. This flow configuration is of fundamental importance
to many common heat and mass transfer problems.

Introduction

Natural convection flows occur widely and are of interest in
many engineering problems including solar collectors, nuclear
reactors, electronic equipment and HVAC problems. Improved
understanding of such flows may lead to better prediction and
optimisation of heat transfer. The flow configuration considered
here is that which occurs on either side of a conducting wall
with a temperature difference across the wall. The problem is
investigated via a dual cavity geometry, illustrated in figure 1.
The left and right outer walls are held at fixed ‘hot’ and ‘cold’
temperatures respectively. The top and bottom walls are adia-
batic and the central vertical wall has an infinite conductivity.
Natural convection boundary layers form on the vertical walls
which flow onto the horizontal walls forming intrusions. The
direction of flow circulation is indicated in figure 1 by arrows.
In the high Rayleigh number flow (Ra> 106) considered here,
the core of the cavities are nearly linearly stratified and the heat
transfer occurs via a primarily convective mechanism [6]. The
flow behavior depends on the Rayleigh number, Prandtl number
and cavity aspect ratioA = H/W .

Earlier studies have highlighted the affect that partitionwalls
have on mean heat transfer characteristics. Typically the results
are correlated with a Nusselt number relation of the form Nu∼
Ra1/4(N + 1)−n wheren is a constant coefficient andN is the
number of partition walls [1, 3, 9, 13, 12]. The parameter space
covered by these studies is given in table 1. The transient start
up characteristics of the partitioned cavity were examinedin
[13] but no unsteadiness was reported in the fully developed
flow.

Figure 1: Configuration studied, with contours of mean temper-
ature illustrated at Ra= 7× 109 and A = 2. Arrows indicate
flow direction inside the cavities.

Pr Ra N A
[1] 6 109 < Ra< 1010 0-2 0.33
[3] 2700-7000 104 < Ra< 106 0-1 1
[9] 6 108 < Ra< 1010 0-4 4
[12] 0.71 105 < Ra< 107 0-4 0.5-1.5
[13] 7 1.8×109 0-1 1

Table 1: Previous partitioned cavity studies.

At a Rayleigh number Rac, a laminar natural convection bound-
ary layer becomes convectively unstable, meaning that if a per-
turbation of frequencyfc is imposed on the flow, the signal will
be amplified by the boundary layer. Once the exciting perturba-
tion ceases the oscillations will decay back to the steady base-
flow. The exact value of Rac depends on flow configuration de-
tails such as background stratification and wall boundary con-
dition (isoflux or isothermal) but is generally above Ra≈ 106

for Pr = 7 [5, 2]. On an infinite vertical plate in an unstrati-
fied domain, Rac = 2.4×105 [8]. The critical Rayleigh number
for convective instability of the boundary layers in isothermal
cavity flow is Ra≈ 106 for Pr= 7.5 [2]. At a higher Rayleigh
number, Raa > Rac, the boundary layer becomes absolutely un-
stable. Here any oscillations will persist and be self sustaining
even if the initial exciting perturbation ceases. Raa is known to
be greater than 1011 for natural convection boundary layers.

Convectively unstable systems can become absolutely unstable
if there is a reinforcing feedback mechanism. An example of
such a mechanism is the flow in very high aspect ratio cavities
where the horizontal walls are short and the two vertical walls
are more directly connected. A perturbation can grow along one
vertical boundary layer, then be advected horizontally through



the top or bottom intrusions onto the opposite vertical wall,
where it is further amplified causing the cavity flow to bifurcate.
For a high aspect ratio cavity Elder [4] found experimentally
that travelling waves appeared at Ra= 5.6× 109 with Pr = 7
andA = 10−30. Using numerical simulations Le Quere [11]
found the transition to unsteadiness occured at Ra≈ 9× 109

with Pr= 7 andA = 10.

In a conjugate boundary layer, a feedback mechanism exists
through the temperature field across the conducting plate. In
this study it is shown that this coupling causes the boundarylay-
ers on either side of the conducting plate to become absolutely
unstable at a lower Rayleigh number than if the conducting wall
was isothermal. We use direct numerical simulations to locate
the critical Rayleigh number for this flow configuration, inves-
tigate the mechanisms which drive this instability and the effect
this has on cavity heat transfer characteristics.

Numerical formulation

The two-dimensional Navier-Stokes equations for incompress-
ible flow with the Oberbeck-Boussinesq approximation for
buoyancy are,
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where Pr is the Prandtl number, the Reynolds number is defined
as Re=U∗H/ν and the Rayleigh number is Ra= gβ∆θH3/να.
ν andα are the kinematic viscosity and thermal diffusivity of
the fluid. The velocity (Ui), temperature (θ), pressure (P), time
(T ) and length (Xi) are made non-dimensional asui = Ui/U∗,
φ = (θ − θr)/∆θ, p = P/ρU∗2, t = TU∗/H and xi = Xi/H
respectively. ∆θ = θH − θC is the temperature difference be-
tween the hot and cold walls and the reference temperature
θr = 0.5(θH +θC). The characteristic velocity is obtained from
U∗ ∼ κRa1/2/H [10]. H is the height of the cavity. The hori-
zontal widthW does not appear in the equations.

The discretised governing equations were solved in finite vol-
ume form on a non-staggered Cartesian grid. The spatial deriva-
tives were discretised using second order central finite differ-
ences except for the advective terms which are discretised us-
ing the third-order accurate QUICK scheme [7]. The advective
terms were advanced in time using the second order Adams–
Bashforth scheme while the viscous terms were advanced us-
ing the Crank–Nicolson scheme. The system of equations was
solved with theBICGSTAB solver with a Multi-grid Jacobi pre-
conditioner.

We have performed a series of simulations over the range
Ra= 0.6−1.8×1010 at a Prandtl number of Pr= 7.5 and with
A = 1 andA = 2. Grid independent solutions have been ob-
tained at Ra= 1.4×1010 with a grid size of∆x = 0.00005 and
∆y = 0.001 and a time step of∆t = 7×10−5. The grid is uni-
form in the vertical (y) direction and has 0.5-1% linear stretch-
ing in the horizontal (x) direction givingny = 1029 andnx = 776
computational nodes atA = 2 andnx = 1032 atA = 1. The same
grid is used for all other simulations.

An initial simulation was performed at Ra= 1.2× 1010 with
the initial condition being a uniform temperature ofφ = 0
with zero initial velocity. The simulation was continued until
the flow reached full development and statistics are converged.
Subsequent simulations at other Rayleigh numbers have been
restarted from this fully developed flow field.

Results

The development of the flow from an initialφ = 0 condition is
given in figure 2 for Ra= 1.2×1010 andA = 2. In this figure
φ is plotted with time at a location on the bottom left side of the
conducting wall. Fort < 3 the boundary layers form on the hot
and cold walls and flow onto the horizontal walls in the same
manner described for isothermal cavity flow [10]. Att ≈ 3 the
horizontal intrusions hit the vertical conducting wall andbegin
to fill up the interior of the cavities. Byt = 70 the cavity is strat-
ified, but does not approach its final mean value untilt > 300.
While the cavity is unstratified, overt ≈ 3−30, waves are gen-
erated by a hydraulic jump type mechanism in the downstream
corners of the isothermal walls where the vertical boundarylay-
ers flow into the horizontal intrusions. These waves propagate
across the cavity and along the conducting wall.

All the simulations in this study are well above Rac = 106, so
the boundary layers are convectively unstable to waves withfre-
quencies in the rangef1(y)− f2(y), where f1 and f2 vary with
height or local Rayleigh number. The exact values off1 and
f2 are not known for the dual cavity or single cavity problem.
Any perturbations to the boundary layers on both isothermal
and conducting walls will be amplified if their frequencies are
within this range.

At t = 30, the perturbations from the corners have ceased but the
oscillations illustrated in figure 2 are self-sustaining and con-
tinue to grow on the conducting wall.
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Figure 2: Time trace ofφ for Ra= 1.2× 1010 and A = 2 at
y = 0.1 and∆x = 0.005 left of the conducting wall.

The results over Ra= 0.6− 1.0× 1010, do not have this be-
havior. Regardless of any additional perturbations applied to
the system, the oscillations in the conducting boundary layer
eventually dissipate and a steady flow field is obtained. This
indicates that the flow becomes absolutely unstable between
Raa = 1.0− 1.2× 1010 and that below Raa = 1.0× 1010 the
boundary layers are only convectively unstable. Subsequent
tests atA = 1 show the critical Rayleigh number is slightly
higher at this aspect ratio with Raa = 1.2−1.4×1010. At this
stage it is not clear why the flow is more stable at a higher aspect
ratio.

In figure 2, overt = 70− 250, it is clear there are two fre-
quencies of oscillation present, a high frequency wave witha
period of t = 1.33 and a low frequency wave with a period
of t ≈ 14. The high frequency signal is observed in all the
simulations performed here and has a normalised frequency,
f ∗ = fcν1/3/(gβ∆θ)2/3 = 0.0142. The wave velocity isUw =
0.23U∗, which isUw ≈ 1.2Vm, whereVm is the maximum veloc-



ity in the boundary layer, inline with results in [2]. Aftert = 300
the low frequency wave has dissipated significantly. Similar
low frequency waves are observed when the Rayleigh number
is suddenly changed in the simulations which are restarted from
the fully developed Ra= 1.2× 1010 solution. This suggests
the low frequency wave relates to a start-up disturbance with
a period governed by the circulation time of the cavity which
is approximately(2H +W )/Uw ≈ 15.4. The period of the low
frequency waves in theA = 1 simulations ist ≈ 30.

Time traces ofφ and the velocity components at other locations
around the cavity (omitted here for brevity) show that the high
frequency waves do not circulate around the cavity but are dis-
sipated in the horizontal intrusions. The high frequency waves
at the conducting plate persist and so it may be hypothesised
that they are driven by some other mechanism. Examining the
interaction of the waves across the conducting plate illustrates
a potential mechanism. In figure 3 the temperature perturbation
is shown on both sides of the plate and directly on the plate at
timet = t1 (black lines) and a short time later att = t2 (red lines).
From halfway up the vertical plate, the waves on each side of the
plate travel in the direction of flow and are strongly amplified.
The temperature perturbation is apparently conducted through
the plate to the boundary layer on the opposing side. On this
opposite side, or equivalently at the upstream ends of the plate,
the perturbations conducted through the wall are much larger
than those in the boundary layer. Here the waves flow against
the mean flow in the boundary layer as illustrated by the arrows
in the inset log plot in figure 3. These waves are an illustra-
tion of the direct coupling between the two boundary layers and
a possible feedback mechanism by which the system becomes
absolutely unstable. An initial perturbation on one side ofthe
plate would be amplified along one boundary layer, conducted
through the plate, and then be amplified in the opposing direc-
tion in the other cavity. The perturbation will continuallyin-
crease in amplitude until ultimately the growth of the wavesin
the system are limited by dissipation in the boundary layer.

An interesting additional test that was performed was to numer-
ically instantly ‘turn off’ the conduction though the plateand
replace the temperature on the plate with the local mean tem-
perature. This has the effect of eliminating communicationbe-
tween the boundary layers. The waves then dissipate and the
flow eventually reaches a steady state solution.
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Figure 3:φ′ at Ra= 1.4×1010 andA = 2, given at three hori-
zontal locations:xw at the conducting plate,xl = xw−0.002 just
to the left of the plate andxr = xw +0.002 just to the right of the
plate. The data is plotted against vertical location and presented
at two time points,t1 andt2 = t1 +0.07 to show progression of
the waves in the boundary layer. The inset plot is a log plot of
the same data.
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Figure 4: 〈φ′φ′〉 at Ra= 1.4× 1010 and A = 2 with distance
from the conducting wall in the right cavity.

The growth of the temperature perturbations along the conduct-
ing plate boundary layers is illustrated in figure 4 where〈φ′φ′〉
is plotted with distance from the conducting wall in the right
cavity. At the upstream end, fory < 0.4, 〈φ′φ′〉 peaks at the
wall, evidence of the perturbation transmitted through theplate.
At y > 0.4 the temperature fluctuation peaks in the boundary
layer.

The coupling between the boundary layers across the plate is
also clearly illustrated by the the transport equation for the tem-
perature variance〈φ′φ′〉 which is given as,
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The convection, production, dissipation and viscous diffusion
balance terms are labelledA, P, D andV respectively. The tur-
bulent diffusion terms are neglected from the above balanceas
they are negligibly small in this flow. The balance terms are
plotted in figure 5 (a-b) illustrating how the perturbation is dif-
fused through the conducting plate from the downstream, high
amplitude end of the boundary layer to the upstream, low ampli-
tude end of the other boundary layer. Aty = 0.2, the upstream
end of the right side boundary layer, diffusion dominates with
maximum value adjacent to the conducting plate, blanced by the
dissipation term. Production is negligible. Aty = 0.8, the pro-
duction term dominates and is much greater than the diffusion
of the perturbation through the conducting wall.

The turbulent kinetic energy balance is not shown for brevity
here but we can report that the velocity perturbation is driven
by buoyancy across the height of the plate. Shear productionis
negligible at the upstream ends of the plate and slightly dissi-
pative at the downstream ends. This is typical of high Prandtl
number natural convection boundary layers [5].

The mean heat transfer across the cavity is illustrated in figure
6 where the Nusselt number is plotted normalised by Ra1/4, the
high Rayleigh number scaling relation given in [10]. Nishimura
et al. [9] found NuH = 0.297Ra1/4(N + 1)−1 with experi-
ments and simulations over the range 108 < Ra< 1010 where
NuH = QH/α∆T . Our results are obtained using NuH =
dφ/dx|x=0. With one partition (N = 1), the constant ob-
tained from Nishimuraet al. is NuH /Ra1/4 = 0.148 where
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Figure 5: Budget for the temperature variance with distancefrom the conducting plate in right cavity at y=0.2 (a) and y=0.8 (b) for
Ra= 1.4× 1010 with A = 2. Legend for budgets is given in (a) with reference to equation (1) and the thick black line gives mean
vertical velocity at those locations.

as the present simulations are approximately 5% higher at
NuH /Ra1/4 = 0.155. There does not appear to be a large jump
in the heat transfer between the steady/unsteady regimes be-
tween Ra= 1.0−1.2×1010 for A = 2 and Ra= 1.2−1.4×1010

for A = 1.
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Figure 6: Nusselt number results presented forA = 2 (dia-
monds) andA = 1 (circles). Solid line indicates the constant
from [9] with N = 1.

Conclusions

The natural convection boundary layer which is formed on ei-
ther side of a conducting plate in a square cavity is shown to
become absolutely unstable at a Rayleigh number lower than
would occur if the plate was isothermal. The evidence presented
suggestes that the instability is a result of the thermal coupling
between the natural convection boundary layers on either side
of the plate which provides a feedback mechanism sufficient
to produce an absolutely unstable system. The critical Rayleigh
number for absolute instability is between Ra= 1.0−1.2×1010

for A = 2 and Ra= 1.2−1.4×1010 for A = 1. The bifurcation
is manifested as a single mode of oscillation withf ∗ = 0.0142.
The mean heat transfer is well predicted by the empirical corre-
lation of Nishimuraet al. [9].
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[11] Quéré, P. L., Transition to unsteady natural convection in
a tall water-filled cavity,Phys. Fluids, 2, 1990, 503–515.

[12] Turkoglu, H. and Yuc̈el, N., Natural convection heat trans-
fer in enclosures with conducting multiple partitions and
side walls,Heat Mass Transfer, 32, 1996, 1–8.

[13] Xu, F., Patterson, J. C. and Lei, C., Heat transfer through
coupled thermal boundary layers induced by a suddenly
generated temperature difference,Int. J. Heat Mass Trans-
fer, 52, 2009, 4966 – 4975.


	Author Index
	Paper List
	Conference Programme

