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Abstract

Hot sedimentary aquifer systems are currently attracting consid-
erable commercial interest in Australia as clean and renewable
energy sources. The feasibility of such technology depends not
only on the flow properties of the aquifer, but also on the prop-
erties of the aqueous fluids. The steady-state flow field between
parallel injection and production wells is expressed in terms of
a potential constructed from the best available equations of state
for water and the porous medium. These calculations serve to
eludicate the qualitative and quantitative importance of aquifer-
and fluid-compressibility effects in such systems.

Introduction

Extraction of geothermal energy from deep, hot sedimentary
aquifers is currently of considerable interest in Australia [3].
Simulations of fluid flows through porous media can be ex-
pected to play a crucial role in the design of such energy-
harvesting schemes. The predicted flow behavior will depend
in an obvious way on the porosity and permeability of the reser-
voir. But the properties of the fluid are possibly even more
significant, considering that the isothermal compressibility of
water can assume large values in the pressure and temperature
ranges approaching the critical point. It is well known that ac-
curate prediction of volumetric properties in the critical region
is an exacting test of any equation of state; as we will see, the
flow of such a fluid through a porous medium poses a potentially
challenging problem in fluid mechanics, especially when com-
bined with the highly non-uniform flow distribution between
parallel cylinders, which arises in this particular application.

Mathematical models of flows through porous media are usually
based on Darcy’s Law,

v =−K
η

∇p, (1)

whereη is the viscosity andK is the permeability. The velocity
v is related to the pore fluid densityρ by the continuity equation,

∂(ρφ)
∂t

=−∇ · (ρv), (2)

whereφ is the porosity of the medium. Use of Darcy’s Law for
v results in the ‘diffusivity equation’

∂(ρφ)
∂t

= ∇ ·
(

ρ
K
η

∇p

)
. (3)

Solution of this nonlinear equation requires specification of the
equation of state relating the pressure and density, and further
assumptions concerning the dependence ofη, K, andφ on p.
Functional relationships of the formφ = φ0exp[βv(p− p0)],
ρ = ρ0exp[βl (p− p0)], andK = K0exp[βK(p− p0)] are often
assumed, whereβv, βl , andβK (Pa−1) are constant and sub-
script 0 denotes values at a reference pressurep0. If η is inde-

pendent ofp, use of

∇
(

ρK
η

)
=

(
ρK
η

)
(βK +βl )∇p,

∂
∂t

(ρφ) = (βv +βl )ρφ
∂p
∂t
(4)

allows equations 1 and 2 to be combined into

∂p
∂t

= D0e(βK−βv)(p−p0)[∇2p+(βl +βK)∇p·∇p], (5)

where D0 = K0/ηφ0(βl + βv) is the hydraulic diffusivity at
p0. A recent paper by Marshall [9] showed that the constant-
compressibility equation of state (withρ0 andβl equal to their
saturated-liquid values) is surprisingly accurate (errors are less
than 1% for temperatures to 600 K and pressures to about 20
MPa), and that analytical solutions of equation 5 are possible if
βv andβK are constant, andβv ≈ βK .

This paper deals with the more general situation where the fluid
compressibilityβl and the flow properties of the medium are
dependent onp. Assuming thatφ = φ0exp[βv(p− p0)], and
using the second of equations 4 to express the time derivative
of ρ in terms of the time derivative ofp, the form of equation 3
that serves as the basis of the present work is found to be

[βv +βl ]φ0eβv(p−p0)ρ
∂p
∂t

= ∇ ·
[

K(p)ρ(p)
η(p)

∇p

]
, (6)

whereβl , ρ, andη are understood to be functions of pore-fluid
pressurep. The permeability depends on pressure indirectly
throughφ, asK(p) ≡ K(φ(p)). Assuming that the values of
the pressure-dependent quantitiesρ, βl , K, andη are expressed
relative to the respective reference valuesρ0, βl0, K0, andη0
corresponding to the same pressurep0, this equation can be
simplified somewhat by defining

P = p− p0, ρ∗ =
ρ
ρ0

, K∗ =
K
K0

, η∗ =
η
η0

, (7)

and introducing

Xi =
xi

L
, τ =

D0t

L2 , D0 =
K0

(βv +βl0)η0φ0
, (8)

whereL is a reference length andD0 is a reference hydraulic
diffusivity. Thus, the dimensionless form of equation 6 is

e(P)
∂P
∂τ

= ∇ · [g(P)∇P] (9)

where

e(P)≡ βv +βl (P)
βv +βl0

eβvPρ∗(P), g(P)≡ K∗(P)ρ∗(P)
η∗(P)

(10)

are the dimensionless specific storage and hydraulic conductiv-
ity, respectively (such thate(0) = g(0)=1), and the gradients are
taken with respect to the scaled coordinates.



Medium and Fluid Properties

The large body of published experimental data for water and
steam was critically evaluated by Wagner and Pruß [10], who
developed a reference-quality equation of state parameterized
to represent the best available measurements of multiple prop-
erties to within experimental error. This equation relates the
measurable properties of water to the first and second partial
derivatives of the potentialΦ = ar/RT (wherear is the non-
ideal Helmholtz energy per unit mass) with respect to the re-
duced densityρr = ρ/ρc and reciprocal reduced temperature
τ = Tc/T. (The critical parameters areρc = 322 kg·m−3 andTc
= 647.096 K.) The isothermal compressibility is

βl ρcRT =
1
ρr

[
1+2ρr

∂Φ
∂ρr

+ρ2
r

∂2Φ
∂ρ2

r

]−1

, (11)

whereR= 0.46151805 kJ·K−1·kg−1 is the specific gas constant
for water. Iterative calculation of the density at specified tem-
perature and pressure is always required. The value and the
pressure dependence of the compressibility depend strongly on
temperature. The Wagner - Pruß [10] equation of state for water
gives a compressibility of about 5×10−10 Pa−1 (almost con-
stant for pressures up to about 100 MPa) at ambient tempera-
ture, and about 4×10−9 Pa−1 at 600 K and 20 MPa, decreasing
to about 1.5×10−9 Pa−1 at 100 MPa.

The best available representation of the pressure dependence
of η is the correlation recommended by IAPWS [6] which ex-
pressesη as a function of the reduced temperature and den-
sity. Use of this in conjunction with the Wagner-Pruß equa-
tion of state shows that the pressure dependence of the viscosity
is slight. For example, at 30◦C, the viscosity on the liquidus
curve at(ps,ρs) = (0.004 MPa, 995.602 kg·m−3) is 0.7972
mPa s, and is 0.7973 mPa s at(p,ρ) = (20.004 MPa, 1004.338
kg·m−3). At 300◦C, the viscosities at(ps,ρs)=(8.588 MPa,
712.329 kg·m−3) and (p,ρ)=(28.588 MPa, 748.563 kg·m−3)
are 0.0859 and 0.0928 mPa s, respectively.

The drained pore compressibilityβv is commonly inferred from
measurements of the mechanical properties of saturated porous
media, by application of poroelastic theory. Perhaps as a result
of the difficulties inherent in such measurements [2], reliable
numerical values are considerably less easy to come by than
accurate volumetric and transport property data for fluids, and
almost no publicly-available data are available for the tempera-
ture dependence ofβv. For present purposes, we regardβv as a
fixed parameter between the limits 10 and 100 times 10−6 psi−1

(or 1.45×10−9 and 1.45×10−8 Pa−1) 1 recently observed by
Jalalh [7] for Hungarian sandstone cores.

The assumption of an exponential dependence of permeability
on pressure is potentially inconsistent with numerous flow mod-
els in which the permeability is expressed in terms of the poros-
ity. For granular media described by the Carman-Kožeńy (CK)
equation, according to which

K ∝
φ2

(1−φ)3 =⇒ lnK = const.+2lnφ−3ln(1−φ). (12)

Since the proportionality constant is independent of pressure,

K(p)
K(p0)

=
(

φ
φ0

)2(
1−φ0

1−φ

)3

. (13)

The deviation from log-linear pressure dependence can be seen

1Conversion factors: 1 psi = 6.894757 kPa, 106 psi = 6.894757 GPa,
(106 psi)−1 = 1.450377×10−10 Pa−1.

more clearly by substitutingφ/φ0 = exp[βv(p− p0)] and mak-
ing use of identities such as 1−φ = 1−exp[lnφ], whereupon

K(p)
K(p0)

= e
1
2 βv(p−p0)

[
sinh1

2 lnφ0

sinh1
2(lnφ0 +βv(p− p0))

]3

. (14)

As an example, considerφ0 = 0.3,βv = 1.45×10−8 Pa−1, and
p− p0 = 10 MPa, for which the expression on the right hand
side of equation 13 is about 1.645, indicating a 64.5% enhance-
ment of permeability due to pore dilation. It is worth noting
that the use of power laws of the formK ∝ φc (as in the stud-
ies of porous rocks by Gouze and Coudrain-Ribstein [5] and
Wark and Watson [11]) leads to rather simpler expressions for
pressure-dependence of permeability. Since the theoretical jus-
tification for such a dependence is not obvious, the Carman-
Kožeńy equation is adopted in the present study. In this regard,
it is also worth remarking that the experimental measurements
of [7] indicate a dependence ofβv on porosity, which will result
in a still more complicated dependence ofK on p.

Flow of Highly-Compressible Fluids

The theoretical treatments referred to in [9]) do not work when
the compressibility is pressure-dependent. Al-Hussainy et al.
[1] showed that flows of fluids with equations of statep= ρRTz
(wherez is the compressibility factor) can be described in terms
of the pseudopressureψ, with dimensions of pressure per unit
time, defined by

ψ = 2
Z p

p0

p
ηz

dp. (15)

If the pressure dependence ofK is insignificant compared to that
of ρ, equation 3 reduces to

∂ψ
∂t

= D(ψ)∇2ψ, (16)

whereD(ψ) is the hydraulic diffusivity. Equation 15 is a special
case of the Kirchhoff transformation (compare [8, page 13]),
which identifiesρv as the gradient of a scalar potential. The
scalar potential defined more generally by which identifiesρv
as the gradient of a scalar potential. In the present context, the
scalar potential defined more generally by

ψ =
Z p

p0

g(p)dp or ψ =
Z P

0
g(P)dP (17)

proves more useful than equation15, since it has the correct di-
mensions of pressure, and incorporates all the limiting cases
of interest. IfK, η, andβl are constant, this definition can be
shown to be equivalent to the Cole-Hopf transformation with a
different choice of integration constants from that used in [9].
The derivatives ofψ are related to those ofP by

∇ψ =
ρ∗K∗

η∗
∇P,

∂ψ
∂τ

=
ρ∗K∗

η∗
∂P
∂τ

. (18)

The corresponding statement of Darcy’s Law is therefore

ρv =−ρK
η

∇P =−ρ0K0

η0
∇ψ. (19)

If the functionse(p) andg(p) in equation 6 areh(ψ) and f (ψ),
respectively, when rewritten in terms ofψ, then since

∇ψ = g(p)∇p,
∂ψ
∂t

= g(p)
∂p
∂t

∂p
∂t

=
1

f (ψ)
∂ψ
∂t

(20)

the equation forψ becomes

1
D∗(ψ)

∂ψ
∂t

= ∇2ψ, D∗ =
f (ψ)
h(ψ)

. (21)



Flow Between Parallel Wells

Bipolar Coordinates

The two-dimensional flow field produced by completely-
penetrating wells is most conveniently described by adopting a
bipolar coordinate system, with foci at points(−a,0) and(a,0),
on the line joining the axes. A variety of coordinate systems can
be devised from this arrangement [4], by imposition of different
conditions on the distancesd1 andd2 between the two foci and
a given field point. Specification ofd1/d2 = eU and the angle
V between these lines generates families of non-concentric cir-
cles. In these terms,U = 0 for all points on they axis,V = π for
all points on thex-axis, andV → 0 asy→ ∞ for a given value
of x: (U,V)=(0,0) is evidently the image of(x,y) = (0,∞). This
coordinate system therefore maps the infinite plane onto an in-
finite strip of widthπ. The equations relatingx,y to U,V are

x = a
sinhU

coshU−cosV
y = a

sinV
coshU−cosV

. (22)

Curves of constantU are circles

(x−acothU)2 +y2 =
a2

sinh2U
(23)

while curves of constantV are

x2 +(y−acotV)2 =
a2

sin2V
. (24)

It is possible to select a value ofa so thatU is constant on each
surface. Thus, if the radius of each well isr0, the equation of
the cylinder on the negativex axis is(

x+
d
2

)2

+y2 = r2
0, (25)

andU will be constant on this circle if

r2
0 =

a2

sinh2U
,

d
2

= acothU, (26)

or

U = cosh−1
(

d
2r0

)
, a = r0sinh

[
cosh−1

(
d

2r0

)]
(27)

With d = 1 m and r0 = 0.1 m, these equations giveU =
2.29243167 anda = 0.489897949 or 49.0 cm, which is slightly
less thand/2. The infinite porous medium bounded by these
two cylinders therefore corresponds to the rectangular strip
of width π, bounded at the ends by the vertical linesU =
±2.29243167. Asd/r0 becomes large,a→ d/2.

Steady Flow Distribution

By standard methods of analysis it can be shown that the scale
factors for the computation of the various vector derivatives are

hV = hU =
a

coshU−cosV
. (28)

Thus the mass flux according to Darcy’s Law is

J≡ ρv =−coshU−cosV
a

ρ0K0

η0

[
∂ψ
∂U

eU +
∂ψ
∂V

eV

]
where eU and eV are orthogonal unit vectors normal to the
curves of constantU and constantV, respectively. The appro-
priate form of the continuity equation for steady flow is

−∇ ·(ρv) =
(coshU−cosV)2

a2

ρ0K0

η0

[
∂2ψ
∂U2 +

∂2ψ
∂V2

]
= 0. (29)

The steady flow potential therefore satisfies Laplace’s equation

∂2ψ
∂V2 +

∂2ψ
∂U2 = 0 (30)

in a rectangle of widthπ and length defined by the values ofU
corresponding to the diameters of the cylinders. On the horizon-
tal boundariesV = 0 andV = π, homogeneous Neumann con-
ditions are physically appropriate, while Neumann or Dirichlet
conditions can be applied at either or both of the vertical bound-
aries. The potential within theU −V rectangle is therefore to
be sought as a Fourier cosine series

ψ = A+BU +
∞

∑
n=1

Cnhn(U)cosnV, (31)

where thehn are hyperbolic functions whose form depends on
the type of boundary conditions to be satisfied at the vertical
boundaries. If the cylinders are equipotential surfaces, the val-
ues ofψ on the corresponding vertical boundaries of the rectan-
gle are independent ofV, and all the Fourier coefficients vanish.
If ψ(U1) = ψ1 andψ(U2) = ψ2, A andB are

B =
ψ1−ψ2

U1−U2
A = ψ1−

ψ1−ψ2

U1−U2
U1. (32)

The required potential is therefore

ψ(U,V) = ψ1 +
ψ2−ψ1

U2−U1
(U−U1). (33)

The V component of the gradient evidently vanishes, and the
U component is proportional to the scale factor. The fluxJ =
(JU ,JV) is therefore one-dimensional withJV = 0 and

JU =−ψ2−ψ1

U2−U1

ρ0K0

η0

coshU−cosV
a

. (34)

Clearly, ψ1−ψ2 > 0 for flow from U1 to U2. It is useful to
rewrite this expression in terms of the one-dimensional flux

J0 =
ρ0K0

η0

ψ1−ψ2

d
(35)

arising from a potential differenceψ1−ψ2 between two planar
surfaces separated by distanced. In these terms,

JU

J0
=−coshU−cosV

U1−U2

d
a

=
coshU−cosV

U2−U1

d
a

; (36)

with d = 1 m andr0 = 0.1 m,U2−U1 = 4.58486334, andd/a is
2.04124145.

Numerical Calculations

Calculation of the pressure dependence ofψ is necessary in
order to determine the pressure difference needed to sustain a
given flow rate. Assuming a reference permeability of about 1
darcy = 1×10−12 m2 and aquifer temperature 350◦C, p0 = ps
= 16.529 MPa,ρ0 = 574.471 kg·m−3, η0 = 0.658 mPa s, and
K0ρ0/η0 = 8.73×10−7 s. For higher pressures, the flow po-
tentialψ can be determined by numerical integration ofg with
respect to the excess pressurep− p0, from 0 to 10 MPa. Results
are shown in figure 1, forβv=1.45×10−8 Pa−1 and 1.45×10−9

Pa−1. For the lower value, the curve is almost the straight line
that would be expected if the integrand were constant. This
result can be explained by observing that the pressure effects
on the density and viscosity are comparable, and approximately
cancel each other out. (This cancelation is also to be expected
at the lower temperatures (up to 200◦C) characteristic of most



Figure 1: Flow potentialψ at 350◦C, calculated forp0 =
ps. Upper curve: βv=1.45×10−8 Pa−1; lower curve:
βv=1.45×10−9 Pa−1.

HSA systems, but the magnitude of the pore compressibility
effect is impossible to predict in the absence of experimental
data on the temperature dependence ofβv.) Figure 1 can be
used to estimate the penetration depth needed to sustain a flow
rate of 100 kg/s. Assuming upstream and downstream pres-
suresps+10 MPa (the hydrostatic pressure of a 2.6 km column
of water) andps, respectively, the corresponding difference in
flow potential is about 12.8 MPa. From equation 35 withd=1
m, the one-dimensional mass flux is therefore (8.73×10−7 s)
× (1.28×107 Pa) = 11.3 kg m−2s−1. The required penetration
area is 8.85 m2, a depth of about 14 m ifr0 = 0.10 m. Rather
small flow rates such as these suggest that in practice, multiple
injection wells might be needed, or that the permeability would
need to be increased by hydrofracturing. In any event, the en-
ergy output cannot be reliably assessed without solution of the
combined fluid-flow and heat transfer problem.

The flow distribution evolves over a time scale determined by
the reference length and the reference hydraulic diffusivity,
D0 = K0/(η0φ0(βv + βl0)) (whereβ0l = 1.69×10−11 Pa−1 at
350◦C), which has the value 3.495 m2s−1 if βv = 1.45×10−8

Pa−1, and 34.95 m2s−1 with 1.45×10−9 Pa−1. If the reference
length isd = 1 m, the corresponding values of the time scale
d2/D0 are 0.2861 s and 0.02861 s. The hydraulic diffusivity
depends on the pressure, or equivalently, on the flow potential,
as shown in figure 2. The contrast between these two curves re-
sults primarily from the enhancement of the permeability given
by equation 14. The diffusivity values that result when the quan-
tity shown in Figure 2 is multiplied byD0 indicate an effectively
instantaneous response to changes in the upstream pressure. In
fact, considering that the speed of sound through water is nearly
1.5 km/s, the time scale for the response of the flow through the
medium would be shorter than the time needed for the propaga-
tion of a pressure change down an injection well with a depth of
2-3 km. These observations applya fortiori for aquifers at lower
temperatures, for which the liquid compressibility and pressure
effects on the viscosity are even smaller.

Conclusions

Flow of water through compressible HSAs can be described in
terms of a flow potential that can be calculated directly from
the pressure dependence of the fluid and medium properties,
with no further analytical approximations. Use of the best avail-
able equations of state for water and published data for the pore
compressibility of sandstones leads to the tentative conclusion
that aquifer compressibility effects will predominate under the
relevant conditions. Calculations indicate that measurements
of pore compressibility and its temperature dependence will be
important in feasibility studies of the exploitation of HSAs.

Figure 2: Dimensionless hydraulic diffusivity as a function of
flow potentialψ at 350◦C, calculated forp0 = ps. Upper curve:
βv=1.45×10−8 Pa−1; lower curve:βv=1.45×10−9 Pa−1.
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