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Abstract

The stability of flow through a model aneurysm is numerically
computed using a global linear stability analysis and a direct
transient growth analysis. The geometry features a sinusoidal
bulge in an otherwise uniform circular pipe, with dimensions
representative of a human abdominal aortic aneurysm. With a
time-independent inflow, the flow is weakly unstable to quasi-
periodic global eigenmodes of azimuthal wavenumbers 4 and
5 at a Reynolds number (based on area-averaged velocity and
pipe diameter)Re≈ 3900. These eigenmodes are concentrated
in the outer part of the bulge, in the vicinity of its downstream
end. A transient growth analysis reveals that the flow is sensi-
tive to transient disturbances beyondRe= 33, well below the
time-averaged Reynolds numbers of blood flow in the human
abdominal aorta.

Introduction

Pipe flows arise in myriad engineering and biological systems,
and hence have been a constant focus of fluid mechanics re-
search for more than a century. The stability of flow in pipes
is of particular interest, as transition from laminar to turbulent
flow leads to a significant change in the flow dynamics. More-
over, particularly with application to biological flows in the car-
diovascular system, changes in the symmetry of flows through
the development of instabilities can markedly alter near-wall
velocity profiles, and hence wall shear stress. This can exac-
erbate cardiovascular diseases such as atherosclerosis [10] and
aneurysm [15].

Cardiovascular disease is a major health concern. For instance,
18% of Australians suffer a long-term cardiovascular condition,
and 11% of the National health expenditure is incurred due to
this disease [1]. In recent years, studies have elucidated the sta-
bility of flow through constricted pipe geometries designedto
model stenosis (e.g. see [5, 7] and references therein). How-
ever, research into aneurysm disease, which manifests through
a localized dilation of an artery due to degradation of wall tis-
sue integrity, has primarily focused on patient-specific simula-
tion [9]. Exceptions include recent laboratory experiments [11]
and numerical simulations [13] in axisymmetric aneurysm mod-
els at physiologically relevant Reynolds numbers. These deter-
mined the wall shear stress distribution across, and flow struc-
ture within, an aneurysm bulge. The laboratory experiments
employed particle image velocimetry in a plane bisecting the
bulge, and inspection of their visualizations reveals slight asym-
metry across the bulge centreline. This hints that these flows
may be susceptible to non-axisymmetric instabilities.

The aim of this study is to investigate both the asymptotic sta-
bility and potential for transient growth within the flow through
an axisymmetric model aneurysm, shown in figure 1. Fully de-
veloped Poiseuille flow with an area-averaged velocityU , flows
from left to right. The fluid is Newtonian with kinematic viscos-
ity ν, and a Reynolds number is defined based on the un-dilated
pipe diameterD as

Re=
UD

ν
.

Aneurysm flows in humans can experience time-averaged and

Figure 1: The geometry under investigation in this paper: the
length (L) and width (W) of the bulge and the un-dilated pipe
diameterD are shown. The bulge profile is sinusoidal.

peak Reynolds numbers ofRe≈ 300 andRe≈ 2000 to 3000,
respectively [11, 9]. These values guide the Reynolds number
range ofRe≤ 8000 investigated in the present study.

Reproducing the aneurysm geometry considered in [13], the
pipe features a smooth bulge with a sinusoidal profile. The
bulge length and maximum diameter are 2.9D and 1.9D, con-
sistent withModel 3in [11]). Despite linear stability of Hagen–
Poiseuille flow, one expects turbulence to appear in the straight
downstream pipe at higher Reynolds number.

Methodology

The flows described in this study are computed by solving the
incompressible Navier–Stokes equations formulated in cylindri-
cal coordinates. A nodal spectral-element method is used for
spatial discretization, and time integration is performedusing
backwards differencing [8]. The code follows a formulationin
cylindrical coordinates [4], and solves the momentum and mass
conservation equations,

∂tu =−(u ·∇)u−∇p+ν∇2u,
∇ ·u = 0,

where∂t denotes a partial derivative with respect to timet, u is
the velocity vector, andp is the kinematic static pressure.

Linear stability analysis

Asymptotic stability of the axisymmetric base flows (U, P) to
three-dimensional perturbations (u′, p′) is determined using a
linear stability analysis. Linearizing about the base flow yields
the linearized Navier–Stokes equations describing the evolution
of the perturbation field

∂tu′ =−(U ·∇)u′− (u′ ·∇)U−∇p′+ν∇2u′,

∇ ·u′ = 0.
(1)

A Fourier decomposition discretizes the three-dimensional per-
turbation field in the azimuthal direction, and linearity decou-
ples individual Fourier modes. This permits the stability of in-
dividual azimuthal wavenumbers (m) to be computed separately
on the same axisymmetric domain as used for the base flow
computations.

An operatorA (T) is defined describing the action of integrat-
ing equation (1) over a time intervalT from an initial per-
turbationu′(t = 0) such thatu′(T) = A (T)u′(0). Solutions
of equation (1) can be decomposed into solutions of the form



Figure 2: Contour plots showing the azimuthal component of
vorticity in the vicinity of the bulge from axisymmetric simu-
lations at Reynolds numbersRe= 1 andRe= 5000. 12 equi-
spaced vorticity contour levels are plotted betweenωθ ±8U/D,
with dark and light shading showing negative and positive vor-
ticity, respectively.

ũ(x)exp(σt), whereσ is the complex growth rate of individ-
ual eigenfunctions̃u(x). Stability is dictated by leading eigen-
modes of the eigenproblem

A (T)ũ j = µj ũ j ,

whereũ j are eigenvectors corresponding to eigenvaluesµj . The
eigenvalue relates to the growth rate of an eigenmode through
µ = exp(σT), and instability is predicted when|µ| > 1. The
linear stability analysis capabilities of the code have been suc-
cessfully employed in recent studies [14, 3].

Transient growth analysis

In contrast to the asymptotic behaviour of linear perturbations
predicted by linear stability analysis, evolution over short times
may result in significant amplification due to the non-normality
of eigenmodes ofA [12]. Transient growth analysis seeks to
determine the maximum possible amplification in energy (G)
for a perturbation evolved over a time intervalτ, and the corre-
sponding initial field leading to this optimal growth (v). These
have been shown to be equivalent to the square of the leading
singular value (λ) and the leading right singular vector ofA ,
respectively.

The square of the principal singular value and right singular
vector ofA are equivalent to the leading eigenvalue and eigen-
vector ofA ∗A , whereA ∗ is the conjugate transpose (adjoint)
of A . This relationship has been used [2] to develop a method
for predicting transient growth of a flow without explicitlycon-
structingA or A ∗. They derived the adjoint linearized Navier–
Stokes equations

−∂tu∗ = (U ·∇)u∗− (∇U)T ·u∗−∇p∗+ν∇2u∗,

∇ ·u∗ = 0,
(2)

such that the evolution of a perturbation backwards in time de-
scribes the action ofA ∗ on a perturbation. Therefore, the ac-
tion ofA ∗A may be achieved by first integrating a perturbation
forward in time overτ using equation (1), and subsequently in-
tegrating the result backwards in time using equation (2). Tran-
sient growth is then governed by the leading eigenmodes of

A
∗
A (τ)v j = λ jv j .

Discretization and grid independence

The mesh used in this study discretized the meridional half-
plane of the geometry, and comprised 1603 elements. In or-

der to accommodate the perturbation fields arising during tran-
sient growth analysis, the domain extended upstream and down-
stream of the bulge for the relatively large distances of 19D and
44D, respectively. To resolve flow features, elements were con-
centrated within and downstream of the bulge.

To determine grid independence, the convergence of transient
growth eigenvalues with increasing element polynomial degree
(Np) was computed. Reynolds numbersRe= 300 and 5000
were considered, corresponding respectively to approximately
the time-averaged Reynolds number for flow through a human
abdominal aorta, and a value exceeding the peak Reynolds num-
ber in these vessels. AtRe= 5000, simulations withNp ≤ 5
failed to achieve a time-invariant state. AtNp = 6, G converged
to within 6 and 3 significant figures forRe= 300 and 5000,
respectively. A resolution ofNp = 6 is hence used hereafter.

Results

Reynolds number dependence of axisymmetric flow

Plots showing the azimuthal component of base flow vorticity
at several Reynolds numbers are shown in figure 2. The flow
quickly adopts the uniform vorticity field associated with fully
developed Poiseuille flow outside of the bulge. Upstream, the
flow only deviates visibly from Poiseuille flow as the bulge be-
gins to expand, while the recovery distance downstream of the
bulge is seen to increase with Reynolds number, though even
at Re= 5000, the flow appears to recover within just a few di-
ameters of the bulge. Secondly, the vorticity at the wall (which
is closely related to wall shear stress [13]) is lower withinthe
bulge than in the un-dilated tube. This difference becomes more
pronounced at higher Reynolds numbers.

As Reynolds number increases, the flow entering the bulge dis-
plays a greater tendency to separate near the entrance, before
proceeding through the core of the bulge and into the down-
stream pipe. Another notable feature of these flows is the vor-
ticity field in the vicinity of the downstream end of the bulgeand
the periphery of the core region. At higher Reynolds numbersa
steady-state waviness develops in the vorticity and flow fields.
Ultimately this region of the flow is observed to become tem-
porally unstable as the Reynolds number is increased beyond
Re≈ 7×103.

Asymptotic flow stability

As reviewed in [12], it is well-known that fully developed
Poiseuille flow in a straight circular pipe is asymptotically sta-
ble to all linear disturbances, though in practice turbulence de-
velops at higher Reynolds numbers. Given that in this geom-
etry the uniform Poiseuille flow is disrupted by the presence
of the bulge, it is possible that these flows may be unstable to
global linear instability modes. A detailed linear stability analy-
sis was conducted over a wide range of Reynolds numbers and
azimuthal wavenumbers to determine the asymptotic stability
of this system.

With increasing Reynolds number the flow first becomes un-
stable via a quasi-periodic mode with wavenumberm= 4 at
Re= 3910, closely followed by another quasi-periodic mode
with m = 5 at Re= 4040. Despite the steady-state axisym-
metric flow becoming unsteady beyondRe≈ 7×103, the zero-
wavenumber mode remains highly stable throughout the range
of Reynolds numbers investigated here, implying that the onset
of unsteady flow observed in axisymmetric simulations is nota
result of a global instability.

Contour plots of the first two eigenmodes to become unstable
are shown in figure 3 atRe= 4000. The perturbation fields of



Figure 3: The leading eigenvector fields from linear stability
analysis of azimuthal wavenumbersm= 4 and 5 atRe= 4000.
Equi-spaced contours of the azimuthal component of vorticity is
shown, with dark and light shading showing negative and posi-
tive vorticity, respectively. The predicted perturbationfields are
concentrated within the bulge, surrounding the bulge core.
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Figure 4: Logarithm ofG plotted againstτ at Re= 300.
Wavenumbersm= 0 to 8 are shown as labelled.

the leading instability modes are concentrated within the region
of the bulge outside of the core flow. The absence of perturba-
tion field structures outside of the bulge reflects the absolutely
stable Poiseuille flow in those regions.

Transient growth: Wavenumber variation

It has been shown (e.g. see [12, 5]) that flows exhibiting lim-
ited asymptotic instability may still exhibit substantialgrowth
over short timescales. For stenotic flows transient growth can
invoke bypass transition, where transient shear layer instability
supersedes the predicted global instability transition path.

Ultimately, growth of azimuthal disturbances with higher
wavenumbers is suppressed by viscosity. Figure 4 plots tran-
sient growth behaviour atRe= 300 across several azimuthal
wavenumbers. Note that the greatest growth is found for the
first azimuthal wavenumber. This was consistent across a range
of Reynolds numbers, and is emerging as a general observation
in confined flow through axisymmetric geometries. Examples
include Hagen–Poiseuille flow [12], stenotic pipe flow [5] and
flow through a suddenly expanded pipe [6].

The peak energy growth predicted atRe= 300 andm= 1 oc-
curs atτ = 3.082 with an amplification ofGmax = 36.21. By
comparison, this amplification is much smaller than in stenotic
pipe flow [5], whereGmax≈ 5.6×104 at τmax≈ 3.3.

Transient growth: Reynolds number variation

Transient growth for azimuthal disturbances withm= 1 at sev-
eral Reynolds numbers are plotted in figure 5. Energy growth
is found to increase in amplification and temporal envelope
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Figure 5: Logarithm ofG plotted againstτ for perturbations
with m= 1 at Reynolds numbers as labeled. Maximum growth
increases with bothReandτ.
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Figure 6:Gmax plotted againstRefor maximum growth for per-
turbations with azimuthal wavenumberm= 1, on a logarithmic
scale.

with increasing Reynolds number. Further computations re-
vealed that the critical Reynolds number for energy growth (i.e.
G(τ) > 1) is Recrit = 32.9, more than two orders of magnitude
below the predicted transition Reynolds number for global in-
stability (Re= 3910).

The variation of peak growth with Reynolds number is plot-
ted in figure 6. Two linear regions are identified (over 50.
Re. 150 andRe& 200), implying power-law dependencies of
Gmax ∝ Re9/5 and Gmax ∝ Re7/5, respectively. These differ-
ent growth trends in these regions may relate to changes in the
underlying axisymmetric base flows. At Reynolds numbers be-
low the first of these regions, the flow remains attached to the
bulge wall. Over 50. Re. 150, the flow separates within the
bulge, and a progressively larger recirculation bubble appears.
At higher Reynolds numbers, the bulge recirculation enlarge-
ment ceases as it occupies the entirety of the bulge outside the
core region.

Snapshot sequences of disturbance energy in the flow are shown
in figure 7 showing initially the amplification of the distur-
bances to their respective peak times, before subsequentlyde-
caying as the disturbance advects downstream of the bulge. The
disturbance structures are observed to shear and slant back-
wards as they move down the pipe, due to the faster flow along
the axis of the pipe than towards the wall.

Conclusions

Computations have revealed that the steady flow through an
axisymmetric aneurysm model with bulge length and width
2.9 and 1.9 times the pipe diameter, respectively, are unsta-
ble to weak transient disturbances with azimuthal wavenumber
m= 1 beyondRe≈ 33. Eventually, the flow becomes unsta-
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Figure 7: Time evolution of the predicted initial disturbance of azimuthal wavenumberm= 1 for optimal growth at (a)Re= 300 with
τ = 3, and (b)Re= 5000 atτ = 5.5, integrated using the linearized Navier–Stokes equations. The logarithm of kinetic energy is plotted
with unit spacing between contours, and darker shading corresponds to higher energy levels. Flow is left to right, and the meridional
half-plane of the geometry is shown.

ble to quasi-periodic global instability modes with azimuthal
wavenumbersm= 4 and 5 atRe≈ 4000. Three-dimensional
direct numerical simulation will be required to determine if the
predicted optimal disturbances could invoke bypass transition
in aneurysm flows.
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